

Universidad de Concepción Dirección de Postgrado Facultad de Arquitectura, Urbanismo y Geografía - Programa de Magister en Análisis Geográfico

Modelación de la Accesibilidad Espacial a la Red Hospitalaria en el Área Metropolitana de Concepción

Tesis para optar al grado de Magister en Análisis Geográfico

MARCELA LORETO MARTÍNEZ BASCUÑÁN CONCEPCIÓN-CHILE 2015

Profesor Guía: Carolina Rojas Quezada Profesor Co-Guía: Juan Carrasco Montagna Dpto. de Geografía, Facultad de Arquitectura, Urbanismo y Geografía Universidad de Concepción

Agradezco la colaboración en el desarrollo de esta memoria a los proyectos Fondap CEDEUS N°15110020 e Innova Biobío GESITRAN N° 11-PC.S2.1116, al apoyo brindado por el Programa de Magister en Análisis Geográfico para la realización de mis estudios de postgrado, y en especial a su directora y profesora guía de este trabajo, Dra. Carolina Rojas Quezada.

RESUMEN

En los últimos años se han desarrollado numerosos estudios apoyados en el uso de herramientas SIG para evaluar la incidencia de la accesibilidad en los desequilibrios territoriales asociados a aspectos relevantes como la salud pública, donde los modelos de accesibilidad han demostrado ser un importante instrumento para la determinación de desigualdades y para buscar alternativas que las solucionen. Este trabajo tiene por objetivo modelar la accesibilidad espacial desde los asentamientos poblados urbanos y rurales del Área Metropolitana de Concepción (AMC) a su red hospitalaria de salud pública, con la finalidad de identificar y analizar los desequilibrios socio-territoriales que se generan en la dinámica del territorio. La metodología propone el uso de la regresión geográficamente ponderada (GWR) para modelar la accesibilidad a las unidades hospitalarias con variables socioeconómicas y de transporte. Los resultados permitieron identificar las zonas más desfavorecidas en el acceso espacial al equipamiento hospitalario, localizadas al Sur del AMC, donde además las variables explican con mayor fuerza la accesibilidad usando el modelo local (GWR). La regresión geográfica presentó numerosas ventajas frente a la aplicación de un modelo global de regresión múltiple (OLS), puesto que permite mejorar los ajustes y conocer la distribución espacial, tanto de los coeficientes de las variables explicativas, como en la significación local del modelo.

Palabras clave: Accesibilidad, equidad espacial, equipamiento hospitalario, regresión geográficamente ponderada.

ÍNDICE DE CONTENIDO

CAPITU	JLO 1 : INTRODUCCIÓN	1
1.1 Mo	tivación y relevancia	1
1.2 Pla	nteamiento del problema	3
1.3 Ob	etivos	4
1.3.1	Objetivo General	4
1.3.2	Objetivos específicos	4
1.4 Me	todología	5
1.4.1	Modelación de la red de transporte y medición de la accesibilidad	5
1.4.2	Modelación de la accesibilidad: métodos de regresión OLS y GWR	9
1.4.3	Tratamiento de las variables	14
1.5 Est	ructura y organización	17
		4.0
	JLO 2 : MARCO DE REFERENCIA	
	cesibilidad desde un enfoque geográfico	
2.2 Jus	ticia espacial y equipamiento sanitario	22
2.3 Def	erminantes sociales de la salud	25
CAPITU	JLO 3 : ÁNÁLISIS DE LA RED HOSPITALARIA Y MODELACIÓN DE	LA
ACCES	IBILIDAD	30
3.1 Áre	ea de Estudio	30
3.1.1	Caracterización de la situación hospitalaria en el AMC	30
3.1.2	Descripción de las variables con enfoque en los determinantes sociale	es
de la	salud	35
3.2 Acc	cesibilidad geográfica a la red hospitalaria pública del AMC	40
3.2.1	Accesibilidad a la oferta de hospitales públicos	40
3.2.2	Accesibilidad al Hospital más cercano	43
	delos de regresión OLS y GWR	
	Modelo OLS (Mínimos Cuadrados Ordinarios)	
3.3.2	Modelo GWR (Regresión Geográfica Ponderada)	50
	cusión	

CAPITULO 4 : CONCLUSIONES	65
CAPITULO 5 : BIBLIOGRAFÍA	69
CAPITULO 6 : ANEXOS	79

ÍNDICE DE TABLAS

Tabla 1.1. Clasificación y velocidades de diseño de la red vial	6
Tabla 1.2. Variables utilizadas en los modelos OLS y GWR	.15
Tabla 3.1. Establecimientos pertenecientes a los SSC y SST, según comuna	31
Tabla 3.2. Tipo de hospitales y nivel de complejidad	34
Tabla 3.3. Características de la red hospitalaria del AMC	.34
Tabla 3.4. Resumen estadístico de las variables	38
Tabla 3.5. Resumen de la media de los tiempos de viaje por comuna	45
Tabla 3.6. Correlaciones bivariadas (Pearson r) entre las variables independier	ntes
candidatas	47
Tabla 3.7. Autocorrelación espacial para la variable dependiente y	las
independientes	48
Tabla 3.8. Resumen modelo OLS	.49
Tabla 3.9. Diagnóstico modelo	.49
Tabla 3.10. Resumen modelo GWR	.51
Tabla 3.11. Diagnóstico modelo GWR	.51
Tabla 3.12. Índice de Moran en los residuos (OLS y GWR)	51

ÍNDICE DE FIGURAS

Figura 1.1. Matriz de asignación de Hospitales por localidades8
Figura 1.2. Selección de variables Censales en Redatam R+SP Process16
Figura 2.1. Marco conceptual de los determinantes sociales de la salud. Comisión
de los determinantes sociales de la Organización Mundial de la Salud (OMS)27
Figura 3.1. Distribución espacial de la red hospitalaria pública del AMC33
Figura 3.2. Población asignada a la red hospitalaria del AMC35
Figura 3.3. Representación espacial de las variables seleccionadas para e
modelo39
Figura 3.4. Accesibilidad a la oferta de hospitales públicos del AMC41
Figura 3.5. Accesibilidad al equipamiento hospitalario más cercano44
Figura 3.6. Autocorrelación espacial aplicada a los residuos de la regresión
OLS50
Figura 3.7. Autocorrelación espacial aplicada a los residuos de la regresión
GWR52
Figura 3.8. Distribución espacial de los R ² locales modelo GWR53
Figura 3.9. Distribución espacial de los coeficientes locales y valores t modelo
GWR: Recorridos de transporte público54
Figura 3.10. Distribución espacial de los coeficientes locales y valores t modelo
GWR: Conectividad55
Figura 3.11. Distribución espacial de los coeficientes locales y valores t modelo
GWR: Hogares con automóvil particular56
Figura 3.12. Distribución espacial de los coeficientes locales y valores t modelo
GWR: Viviendas Rurales57
Figura 3.13. Distribución espacial de los coeficientes locales y valores t modelo
GWR: Viviendas Irrecuperables58
Figura 3.14. Distribución espacial de los coeficientes locales y valores t modelo
GWR: Población analfabeta 59

CAPITULO 1: INTRODUCCIÓN

1.1 Motivación y relevancia

Los estudios geográficos desde un enfoque espacial y automatizado, en general aplicados a la planificación, localización y gestión territorial de los servicios sanitarios, han ofrecido importantes posibilidades para evaluar la distribución espacial de la oferta de los equipamientos hospitalarios y de atención primaria (Ramírez & Bosque Sendra, 2001; Schuurman et al., 2006; Sasaki et al., 2010; Buzai, 2011), pudiéndose identificar áreas razonablemente servidas y/o marginadas, y en éstas identificar cuáles son los grupos socio-espaciales beneficiados o desfavorecidos en cuanto a su accesibilidad (Fuenzalida, 2010). Entonces, desde la disciplina geográfica, el objetivo ha sido evaluar cómo se garantiza un acceso equitativo de la población a las prestaciones, tanto de atención primaria como especializada en un sistema de salud, cuya expresión espacial implica al mismo tiempo una distribución geográfica equitativa de los centros que prestan servicios de salud a la población, sin embargo en escasas ocasiones se ha considerado el sistema de transporte que posibilita la movilidad a la población.

Una mirada desde la distribución espacial de los centros asistenciales, dependerá de la relación del servicio que ofrecen (en función de su complejidad y especialización) y su localización geográfica (Rodríguez, 2010), mientras que la accesibilidad, además de la localización de la red sanitaria, depende de la población que se desplaza (Gutiérrez & García Palomares, 2002). En este sentido, es relevante cumplir con el principio de equidad espacial, el cual hace referencia a la justicia en la distribución geográfica de un equipamiento, relacionándose directamente con el concepto de igualdad, que es la medida que mejor valora las distribuciones. De esta forma, la equidad espacial depende de la facilidad de acceso y de la variabilidad de las distancias, tiempos y costos económicos que separan a cada individuo de los servicios o equipamientos más próximos

(Ramírez, 2003; Bosque Sendra, 1992). Entonces, el cuestionamiento sobre la localización de equipamientos en el análisis de equidad y accesibilidad espacial a la salud ha sido una de las preguntas frecuentes en geografía, siendo numerosas las contribuciones desde la geografía automatizada, los Sistemas de Información Geográfica (SIG) y los Sistemas de Ayuda a la Decisión Espacial (SADE), los que pueden brindar una gran cantidad de alternativas para su tratamiento, como se puede evidenciar en los estudios de Garrocho, 1998; Bosque Sendra, 2000; Ramírez, 2001; Luo & Wang, 2003; Buzai, 2007, y Apparicio *et al.*, 2008.

En este contexto, los SIG se destacan como potentes herramientas de apoyo en el análisis espacial, planeamiento y evaluación de intervenciones en el sector salud, haciéndose evidente el papel impulsor de los mapas y de las nuevas herramientas de geoprocesamiento, que se integran a las prioridades de investigación y acción (Íñiquez & Barcellos, 2003).

Los SIG específicamente permiten desarrollar aplicaciones de análisis cuantitativos relacionados con la Geografía de la Salud, tanto en los estudios de Geografía Médica como la Geografía de los Servicios. Esta última línea ha sido aplicada al análisis geográfico de la cobertura de equipamientos de salud, accesibilidad, rutas óptimas, áreas de influencia, evaluación multicriterio y análisis de localización-asignación (Barcellos & Buzai, 2006), destacándose los estudios de análisis de redes de Gutiérrez & Monzón (1993); Gutiérrez (1994); y Gutiérrez et al. (2009), donde se analizan los efectos de las actuaciones previstas en un plan de infraestructuras sobre la accesibilidad territorial, considerando diversos modos de transporte, además de la medición específica de la accesibilidad peatonal a la red sanitaria desarrollada en Gutiérrez & García Palomares (2002); por otra parte los estudios de accesibilidad y localización de hospitales públicos, desarrollados por Ramírez & Bosque Sendra (2001); y Ramírez (2003), que evalúan tanto la equidad espacial en el acceso, como la eficiencia en la distribución del equipamiento hospitalario.

De esta forma, es importante la reflexión de la incidencia de la accesibilidad en los desequilibrios territoriales de los centros poblados desde un enfoque geográfico, más la incorporación de variables sociales, de transporte y de salud pública. Para este propósito, los modelos de accesibilidad propuestos aquí se presentan como un importante instrumento para la determinación de las desigualdades existentes en el territorio, y para buscar alternativas que las solucionen. Este trabajo representa además un aporte en el enfoque de la geografía de los servicios de salud, puesto que la modelación geográfica de la accesibilidad a establecimientos hospitalarios para el análisis de sus factores explicativos espaciales ha sido un campo recientemente explorado en esta disciplina, permitiendo migrar desde una perspectiva global al análisis local del problema.

1.2 Planteamiento del problema

En Chile se producen desigualdades en el acceso, oportunidad, calidad, y coberturas de las prestaciones especializadas de salud, debido a que la Red Asistencial del Sistema Público de Salud presenta una desigual distribución de equipamientos sanitarios, tanto en número como en nivel de complejidad, mostrando en algunos casos, servicios de salud claramente infradotados y generando, en relación a la demanda que deben de atender, déficit de acceso, calidad de atención y cobertura (Fuenzalida, 2010).

La equidad geográfica, precisamente, hace referencia al acceso físico a los servicios. La población que habita en una determinada área geográfica puede tener mayores dificultades para acceder a los servicios sanitarios de lo que se puede considerar normal para la mayoría de los habitantes. Por otra parte, existen factores que contribuyen a incrementar estas inequidades desde el punto de vista de los determinantes sociales de la salud, referidos a los aspectos socioeconómicos y de la calidad de vida de las personas, que determinan el estado de salud de los individuos o poblaciones, y que son resultado de la

distribución del dinero, poder y recursos (Whitehead, 1992; Graham, 2004; Marmot, 2007).

En el Área Metropolitana de Concepción (AMC), existen 228 localidades urbanas y rurales distribuidas en las distintas comunas que la componen, con altas densidades de población en algunas localidades desprovistas de hospitales y centros de atención primaria. Muchas de estas localidades presentan altos índices de ruralidad y una infraestructura vial deficiente, que impide la adecuada conectividad a las áreas urbanas, donde se localizan dichos equipamientos de salud. Considerando estos aspectos, sumado а las características socioeconómicas y circunstancias materiales de la población tratada en hospitales públicos, se hace fundamental el análisis de la accesibilidad a estos equipamientos en el AMC, con el objetivo de identificar las desigualdades socioespaciales que se generan en la dinámica del territorio y contribuir a la planificación inclusiva de los equipamientos de salud.

1.3 Objetivos

1.3.1 Objetivo General

Modelar la accesibilidad espacial desde los asentamientos poblados urbanos y rurales del Área Metropolitana de Concepción (AMC) a la red hospitalaria de salud pública, con la finalidad de identificar y analizar los desequilibrios socio-territoriales que se generan en la dinámica del territorio.

1.3.2 Objetivos específicos

• Evaluar la accesibilidad en tiempos de viaje al equipamiento hospitalario, por la red de transporte privado.

- Modelar espacialmente la accesibilidad con factores geográficos de carácter socioeconómico y de transporte.
- Analizar estadísticamente la importancia y significancia de los factores socioeconómicos y de transporte en los diferentes niveles de accesibilidad.
- Analizar las desigualdades espaciales de la red hospitalaria y de los determinantes sociales de la salud en el AMC.

1.4 Metodología

1.4.1 Modelación de la red de transporte y medición de la accesibilidad

Para la modelación de la red se utilizan las funcionalidades de análisis de redes de los Sistemas de Información Geográfica (SIG), donde se incluyen todas las carreteras estatales, concesionadas y urbanas de las comunas que conforman el AMC, a escala 1:10.000, actualizadas al año 2013 por la Secretaria Regional Ministerial Seremi MINVU. Posteriormente, a través de la aplicación de un conjunto de reglas topológicas se corrigieron los errores de la red vial almacenada en una *Personal Geodatabase*.

Las redes se catastran como un elemento geométrico lineal y las localidades como elementos georreferenciados, con propiedades y atributos específicos. El dato de redes requiere las características básicas para la modelación, como medidas de longitud por tramos, velocidades máximas, y tipo de vía. La creación de un *Network Dataset* implica la transformación de la red en un sistema de nodos (*Junctions*) y ejes (*Edges*), con la finalidad de utilizar las funcionalidades de la herramienta *Network Analyst* de ArcGIS. Para esto fue necesario completar la tabla de atributos de la red vial con los atributos de Longitud, Velocidad y Tiempo.

Para determinar el atributo velocidad, se definió previamente el tipo de vía según la función de la ruta para diseño, cuyos criterios están contenidos en el Manual de Carreteras del Ministerio de Obras Públicas¹. Se incorporó además la vialidad urbana establecida en la Ordenanza General de Urbanismo y Construcción², considerando únicamente la red primaria. La clasificación de la red vial y velocidades asignadas³ se muestran en la Tabla 1.1.

Tabla 1.1: Clasificación y velocidades de diseño de la red vial

Categoría	Tipo de Vía	Velocidad Km/h
Corretores	Autopistas	100/ 120
Carreteras	Primarias	80
Caminos	Locales y de Desarrollo	40
Urbanas	Red Primaria	60

Fuente: Elaboración propia en base a Manual de Carreteras (2010), MOP

Las velocidades indicadas en la Tabla 1.1, se integran a la base de datos de redes de transporte del AMC penalizadas al 80% de su valor máximo, con la finalidad de considerar el factor congestión vehicular.

Posteriormente, se generó una matriz de costos de origen-destino, para lo cual se consideraron 228 localidades pobladas pertenecientes a las comunas del AMC. Mediante una matriz de Origen-Destino, se obtienen los valores de los tiempos mínimos de acceso de las 228 localidades estudiadas a los hospitales públicos, que finalmente se utilizan para el cálculo de la accesibilidad.

¹ Vol. N° 6: Seguridad Vial. Diciembre 2010.

² Capítulo 3, artículos 2.3.2. y 2.3.3.

³ Velocidad considerada para diseñar una vía, que corresponde a la máxima velocidad a la que un vehículo puede circular en condiciones de flujo libre, con seguridad teóricamente total.

De esta forma, se calcula el promedio de las impedancias (restricciones) que separan cada localidad de origen con los recintos hospitalarios de destino a través de la red, siendo el número de establecimientos hospitalarios de destino previamente designado para cada localidad, según la comuna a la cual pertenezcan.

Por lo tanto, en este estudio la accesibilidad se entiende como el promedio de los tiempos de viaje de cada localidad a sus hospitales asignados, según lo regulado por el Ministerio de Salud a través de la disposición de los Servicios de Salud en el área de estudio.

La utilización de los tiempos de viaje en la modelación de la accesibilidad a los establecimientos de salud primaria u hospitalaria, ha sido incorporada ampliamente en diversos estudios (Brabyn & Skelly, 2001; Munoz & Kallestal, 2012; Bagheri *et al.*, 2009; Hare & Barcus, 2007; Rodríguez, 2010), donde se considera el factor localización (población, centros de salud) y las características de la red para su obtención (velocidad de la vía, longitud por tramos).

Es importante señalar que la población del AMC puede estar asignada sólo a un recinto hospitalario (denominado hospital base), en el caso de las localidades que no cuenten con este equipamiento en su comuna (Chiguayante, San Pedro, Hualqui, Hualpén), incluyendo Concepción y Talcahuano que no pueden ser atendidos en otro recinto hospitalario público adicional. Las localidades que están asignadas a dos hospitales, pueden acceder tanto al establecimiento emplazado en su comuna de origen como a su hospital base (H. Regional - H. Higueras), tal como se muestra en la Figura 1.1.

Hospitales AMC Localidades Tome Localidades Hualpén, Talcahuano Localidades Santa Juana Localidades Penco Localidades Concepción, Chiguayante, San Pedro de la Paz, Hualqui Localidades Lota Localidades Coronel Servicio de Salud Concepción (SSC) Servicio de Salud Talcahuano (SST)

Figura 1.1: Matriz de asignación de Hospitales por localidades

Fuente: Elaboración propia

La valoración de accesibilidad geográfica se realiza mediante la identificación de estándares que toman como nivel base el criterio de accesibilidad marcado en la planificación sectorial, es decir, tomando como tiempo de acceso límite los 30 minutos al hospital de referencia (Consejería de Salud, 2004; Bosanac *et al.*, 1976). De esta forma se consideran intervalos o categorías de accesibilidad según los siguientes criterios (Cornago & Orcao, 2003):

- Tiempo de viaje menor o igual a 15 minutos: accesibilidad óptima.
- Tiempo de viaje entre 15 y 30 minutos: accesibilidad favorable.
- Tiempo de viaje entre 30 y 45 minutos: accesibilidad desfavorable.
- Tiempo de viaje mayor de 45 minutos: accesibilidad muy desfavorable.

Los resultados de la medición de la accesibilidad se obtienen para dos análisis: (1) tiempos de viaje a la oferta de hospitales públicos, y (2) tiempos de viaje al hospital más cercano. El primer análisis considera la posibilidad de recurrir tanto al hospital más cercano como al hospital base (atención especializada). El segundo, considera únicamente la unidad hospitalaria más cercana (atención de urgencia).

Sin embargo, para la implementación de los modelos de regresión, se consideró como variable dependiente la accesibilidad medida a la oferta de hospitales públicos (primer análisis).

1.4.2 Modelación de la accesibilidad: métodos de regresión OLS y GWR

Los modelos de regresión lineal múltiple han sido utilizados ampliamente en diversos estudios, como la planificación del transporte (Walters & Cervero, 2003; Kuby et al., 2004; Cardozo et al., 2010; Gutiérrez et al., 2012), crecimiento urbano (Rojas et al., 2015), islas de calor urbanas (Soto, 2013), infraestructura pública y precios de vivienda (Collazos et al., 2006; Duque et al., 2011) y recientemente en análisis de accesibilidad (Mountain et al., 2007; Bagheri et al., 2009; Paez et al., 2010; Comber et al., 2011).

Para la modelación de la accesibilidad como variable dependiente se utilizaron los métodos de Mínimos Cuadrados Ordinarios (*Ordinary Least Squares* - OLS) y Regresión Geográficamente Ponderada (*Geographically Weighted Regression* - GWR).

El método OLS es un modelo global que se basa en el uso de una sola ecuación para explorar la relación entre las variables. En este modelo se asume que la relación es consistente en toda el área de estudio (estacionaria), sin considerar la posibilidad de que existan variaciones locales producto de la heterogeneidad propia del espacio (Gutiérrez *et al.*, 2012). Por otra parte, el método GWR es un modelo de regresión local que crea una ecuación para cada elemento del conjunto de datos de la variable dependiente⁴.

Una regresión global (OLS) se puede representar como en la ecuación (1):

$$y = \beta_0 + \sum_k \beta_k x_{ik} + \varepsilon_i \tag{1}$$

Donde y es el valor estimado de la variable dependiente para la observación i, β_0 es el intercepto, β_k es el parámetro estimado para la variable k, x_{ik} es el valor de la variable k ésimo para i, y ε_i es el término de error (Fotheringham & Charlton, 1998).

El modelo global (OLS), calibra una ecuación de regresión única para todas las observaciones. Sin embargo, la GWR construye una ecuación de regresión por separado para cada observación, y cada ecuación es calibrada usando una ponderación diferente de las observaciones contenidas en el conjunto de datos. El modelo GWR permite trabajar con parámetros locales en lugar de parámetros globales, y se representa en la ecuación (2):

$$y = \beta_0(u_i, v_i) + \sum_k \beta_k(u_i, v_i) x_{ik} + \varepsilon_i$$
 (2)

Donde (u_i, v_i) indica las coordenadas del punto de i ésimo en el espacio (Fotheringham et al. 2002).

-

⁴ Una descripción detallada de la GWR está dada por Fotheringham et al. (2002).

En la Regresión Geográfica Ponderada (GWR), los parámetros estimados se construyen mediante un enfoque en el que la contribución de una muestra para el análisis se pondera en base a su proximidad espacial a la ubicación específica en consideración. Así, la ponderación de una observación ya no es constante en la calibración, pero puede variar en función de diferentes ubicaciones. Los datos de observaciones cercanas son más ponderados que los datos de observaciones más lejanas. Los parámetros se estiman según la ecuación (3):

$$\widehat{\beta}(u_i, v_i) = \left(X^T W(u_i, v_i) X\right)^{-1} X^T W(u_i, v_i) y \tag{3}$$

Donde, $\hat{\beta}$ revela una estimación de β , X es una matriz de variables independientes, y $W(u_{ii})$ es una matriz n por n cuyos elementos fuera de la diagonal son cero y cuyos elementos diagonales representan la ponderación geográfica de cada dato observado de n para el punto de regresión i (Fotheringham et al., 2002). Esto es:

$$wi = \begin{bmatrix} wi1 & 0 & 0 & \dots & 0 \\ 0 & wi2 & 0 & \dots & 0 \\ 0 & 0 & wi3 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & win \end{bmatrix}$$
(4)

Donde W_{in} es el peso de los puntos de datos n en la calibración del modelo para la ubicación i. La matriz de ponderación actúa para asegurar que los datos cerca de la ubicación i son mayormente ponderados que los datos de las observaciones más lejanas.

Para la asignación de los pesos en el modelo GWR se utilizó un esquema de ponderación conocido como Kernel adaptativo (con variación espacial), en el que en la medida de las variaciones de densidad de los datos, se asignan medidas más grandes donde éstos se encuentran de forma dispersa, y medidas menores donde están más concentrados (Rojas *et al.*, 2015).

Para la estimación del modelo se utilizan 119 puntos correspondientes a las coordenadas x,y de los centroides de los distritos censales del AMC⁵ y, para calibrar la función de ponderación espacial e identificar el ancho de banda óptimo se aplicó el Coeficiente de Información de Akaike (AIC), el cual es útil para evaluar además qué modelo proporciona un mejor ajuste que el global, teniendo en cuenta los diferentes grados de libertad en ambos modelos.

Según Hurvich et al. (1998), el AIC se define a través de la siguiente ecuación:

$$AIC_c = 2n \log_e(\sigma) + n \log_e(2\pi) + n \left[\frac{n + tr(S)}{n - 2 - tr(S)} \right]$$
 (5)

Donde n es el tamaño de la muestra, σ es la desviación estándar estimada del término de error, y tr(S) es una función del ancho de banda.

Las diferencias en la utilización de un modelo estadístico global y local se basan principalmente en la capacidad de este último de ser espacializado y representado en un ambiente SIG, con énfasis en las diferencias a través del espacio, desagregación local de las estadísticas locales, entre otras (Fotheringham *et al.*, 2002).

Según Gutiérrez et al. (2012), algunas de las principales ventajas de la utilización del modelo GWR son las siguientes:

- Capacidad de análisis desde una perspectiva global a una local del problema, con un mayor grado de detalle y precisión.
- Los coeficientes de cada una de las variables o predictores varían en cada unidad espacial.

12

⁵ Se excluyen del análisis los distritos correspondientes a las islas Quiriquina (Talcahuano) y Santa María (Coronel).

- Posibilidad de estimar coeficientes de determinación locales para cada unidad espacial a partir de los valores de un conjunto de observaciones vecinas, permitiendo conocer la forma en que se combinan localmente las variables de la regresión (Fotheringham et al., 2002).
- La desagregación del coeficiente de determinación global (R²) en coeficientes locales y el análisis de su distribución geográfica, permiten conocer dónde las variables independientes tienen un mayor o menor poder explicativo (Fotheringham *et al.*, 2002; Lloyd & Shuttleworth, 2005).
- En general, este tipo de regresión genera errores de estimación más pequeños que el modelo tradicional, además de anular o reducir el problema de la autocorrelación espacial (Hadayeghi et al., 2010).
- Al proveer resultados específicos para cada localización, éstos pueden ser utilizados como evidencias para apoyar políticas o toma de decisiones locales.

En los resultados se analiza la distribución espacial de los ajustes del modelo GWR (valores locales de R^2) y de los coeficientes locales β (y sus significaciones en el área de estudio), así como la presencia de autocorrelación espacial en los residuos de ambos modelos. El signo asociado al coeficiente (uno para cada variable explicativa) dice si la relación con la variable dependiente (tiempos de viaje a hospitales) es positiva o negativa. La selección y tratamiento de dichas variables se muestra a continuación.

1.4.3 Tratamiento de las variables

Para la modelación de la accesibilidad, se consideró como unidad de análisis los distritos censales (polígonos) del AMC, por lo tanto las variables explicativas se obtuvieron en función de esta unidad territorial. El distrito censal es la unidad geográfica que subdivide a la comuna con fines censales, y se escogió en este trabajo debido a que permite incorporar características de la población, hogares y viviendas tanto para el área urbana como rural, con un número de unidades espaciales adecuadas para la modelación a nivel local.

Como se mencionó en el apartado 1.4.1, la accesibilidad fue calculada en tiempos de viaje a hospitales, considerando como unidad espacial las localidades pobladas (puntos). Sin embargo, para la modelación se realizó una agregación de sus valores considerando su promedio para cada unidad distrital. De esta forma, se consiguen niveles más representativos de los tiempos de viaje al considerar la ubicación de los centros poblados urbanos y rurales, y no el centroide del distrito, que en muchos casos no implica emplazamiento de población.

Se utilizaron seis variables explicativas de carácter socioeconómico y de transporte que representan determinantes sociales de la salud de la población, a las que se les aplicó una matriz de correlaciones bivariadas con el fin de identificar posibles problemas de multicolinealidad en los modelos de regresión.

Cuatro variables fueron escogidas del Censo de Población y Vivienda del año 2002, correspondientes a las jerarquías Personas, Vivienda y Hogar. Dos variables fueron obtenidas del Proyecto Gesitran Biobío⁶, correspondientes a la jerarquía Transporte (número de recorridos de transporte público e índice de conectividad). El listado de las variables y su descripción se muestra en la Tabla 1.2.

14

-

⁶ Plataforma Tecnológica para la Gestión Integral del Sistema de Transporte en la Región del Biobío www.gesitranbiobio.cl.

Tabla 1.2: Variables utilizadas en los modelos OLS y GWR

Jerarquía	Variable	Descripción	Escala/Nivel	Fuente				
Variable Dependiente	Tiempos de viaje a hospitales	Tiempos de viaje medios de las localidades pobladas por distrito censal a los hospitales públicos	Distrito	Elaboración propia				
Personas	Población Analfabeta	Porcentaje de personas de 5 años o más que no sabe leer ni escribir por distrito censal, respecto al total de población	Distrito	Censo 2002				
	Viviendas Rurales	Porcentaje de viviendas rurales por distrito censal respecto al total de viviendas	Distrito	Censo 2002				
Vivienda	Viviendas Irrecuperables	Porcentaje de viviendas de tipo mediagua; rancho, choza; ruca; móvil (carpa, vagón, etc.) por distrito censal, respecto al total de viviendas	Distrito	Censo 2002				
Hogar	Hogares con automóvil	Porcentaje de hogares que tienen uno de los siguientes vehículos destinados únicamente al uso particular: automóvil, furgón, camioneta, por distrito censal respecto al total del hogares	Distrito	Censo 2002				
Transporte	Recorridos de Transporte Público	Número de líneas de transporte público (buses urbanos, interurbanos y rurales, colectivos, tren de pasajeros) que pasan por cada distrito censal	Distrito	Elaboración propia en base a Gesitran Biobío				
	Conectividad	Índice que relaciona el número de arcos con el número de nodos de la red, por distrito censal.	Distrito	Gesitran Biobío				

Fuente: Elaboración propia

Los valores obtenidos para cada variable se representan en primer lugar en una Matriz de Datos Original (MDO), que contiene los datos extraídos de las cuatro variables censales y los valores de las variables de transporte (número de recorridos e índice de conectividad) para cada uno de los 119 distritos censales del AMC.

A partir de los datos obtenidos, se generó en segundo lugar una Matriz de Datos Índices (MDI), proceso de ajuste de la MDO, en la que cada valor de las cuatro variables censales se ha relativizado respecto a la variable base (Buzai, 2003). Es decir, corresponde a los valores en porcentaje para todas las variables de la MDO. Dado que cada variable está agrupada en un nivel de jerarquía distinto (Personas, Vivienda y Hogar), el valor del porcentaje de la variable para cada distrito se calculó con los totales correspondientes a la jerarquía.

La consulta y extracción de las variables censales seleccionadas fue realizada en el *software* libre desarrollado por CEPAL, REDATAM R+SP Process. Este programa es capaz de procesar los datos obtenidos del Censo de Población y Vivienda del año 2002 y además permite desagregar la información contenida en diversas unidades geográficas (Figura 1.2).

R+G4 Process Archivo Diccionario Proceso Estadístico Herramientas Ventana Ayuda 🏗 🔐 🔛 🖊 😘 🍇 🚳 🚳 🐧 A' A' iii - 🔳 🕨 😭 🤻 R cpv2002.DIC ⊡ CL2K Grupo Alias Variable REGION **■** ANHOEST Años de estudio F PROVINCE ■ ANOHJO Año Nacimiento Ultimo Hijo Nacido Vivo P36B E-COMUNA **■** CEGUERA Ceguera Total P20 1 E DISTRITO ■ COMTRAES Código Comuna o País dende Trabaja... P33B - AREA **■** CULTURA Pertenencia a Pueblos Originarios o I... ZONALOC Ultimo Curso o Año Aprobado Enseñ... ■ CURSO P26B MANZENT **■** DISCAPAC Sin discapacidad E-SECTOR **■** DMENTAL Deficiencia Mental P20_5 **■** ECIVIL Estado Civil Actual HOGAR ■ EDAD P19 Edad en años cumplidos **EDQUINQ** Edades Quinquenales **I** GIRO Código de Actividad Económica (CIIU ... **■** HJOS Hijos Nacidos Vivos Tenidos P34 **■** HJOSVIV Hijos Vivos Actualmente P35 **■**LEE Sabe Leer v Escribin P25 LISIADO Lisiado/Parálisis P20_4 **■** LLEGADA Año llegada al País P22A ■ LUGNAC Lugar o Comuna de Nacimiento LUGRES97 Comuna o Lugar Residencia en 1997 P24A **■** LUGTRAES Comuna donde Trabaja o Estudia P33A **■** LUGVIV Vive Habitualmente en esta Comuna P23A **■** MESHIJO РЗ6А Mes de Nacimiento Ultimo Hijo Nacido... ■ MUDEZ P20 3 Mudez **■** NACIMIEN Código de Comuna o País de Nacimie... P22B **■** NUMOPER Número Orden Persona ■ OCUPACIO Código de Ocupación (CIUO88 a dos ... **■** PARENTES P17 Parentesco con Jefe o Jefa de Hogar RELIGION Religión que profesa P28

Figura 1.2: Selección de variables Censales en Redatam R+SP Process

Fuente: Redatam R+SP Process

Los cálculos de los modelos de regresión (OLS y GWR) se implementaron utilizando las herramientas de modelado de relaciones espaciales de ArcGIS (10.2). A partir de un conjunto de variables candidatas se realizaron múltiples modelos, hasta seleccionar uno con un alto poder explicativo y que incorpora las seis variables explicativas, relevantes desde el punto de vista de la accesibilidad a la salud.

1.5 Estructura y organización

El estudio se estructura en cuatro capítulos. Luego de la presente introducción, el segundo capítulo contiene el marco referencial que abarca las perspectivas teóricas y metodológicas estudiadas, referentes a tres temáticas fundamentales: la accesibilidad geográfica, la justicia espacial en el equipamiento sanitario y los determinantes sociales de la salud.

El tercer capítulo expone los resultados obtenidos a partir de la aplicación de la metodología, y su respectivo análisis y discusión, en consecuencia de los objetivos específicos propuestos.

El cuarto capítulo entrega las conclusiones obtenidas y los principales aportes del trabajo. Finalmente, el quinto capítulo (anexos) incluye una publicación desarrollada en el marco de este proyecto de tesis.

CAPITULO 2: MARCO DE REFERENCIA

2.1 Accesibilidad desde un enfoque geográfico

En el contexto geográfico, la accesibilidad se entiende como la oportunidad relativa de interacción y contacto, y en el análisis regional la accesibilidad se refiere a la mayor o menor facilidad con que en un momento dado es posible alcanzar un lugar desde otro (Higueras, 2003). Sin embargo, como indican Monzón & Orellana (1996), cada autor suele proponer una definición de accesibilidad a su medida, en función de los objetivos de su trabajo y de los índices definidos para su análisis.

Según García (2000), la definición más válida es aquella que relaciona accesibilidad con la separación de un punto con las actividades, de forma que accesibilidad puede ser definida como la medida de las oportunidades disponibles por la población para alcanzar lugares donde puedan realizar actividades que les son importantes. Además establece que para medir la accesibilidad, se deben considerar algunos elementos: por una parte, cuál es el sistema de transportes sobre el que se va a medir esa accesibilidad, por otra, cuál es la medida de distancia considerada, pues podrá medirse en longitud, pero también en tiempo de viaje o coste del mismo, teniendo en cuenta cuál es la distribución de aquello que quiere ser alcanzado.

Las diferentes medidas tendientes a calcular la accesibilidad geográfica a equipamientos, y que posteriormente han sido utilizadas para evaluar su accesibilidad temporal y económica, consideran de manera individual o conjunta los puntos de demanda donde reside la población y los puntos de oferta donde se brinda el servicio, teniendo en cuenta la distancia que separa a ambos componentes (Ramírez, 2003).

De esta forma, la evaluación de la accesibilidad constituye una importante línea de investigación de la Geografía de la Salud, que ha sido recientemente explorada con el auge de las tecnologías de la información geográfica y la creciente preocupación por lograr equidad en el acceso a equipamientos públicos sanitarios (Buzai, 2007).

El acceso a los servicios de salud implica considerar tanto su existencia como equipamiento, así como el hecho de que éstos resulten geográfica y económicamente alcanzables, de esta forma el transporte público tiene una influencia central en el acceso a las unidades de prestaciones sanitarias, siendo sus deficiencias un obstáculo a superar (Villanueva, 2010). Desde la perspectiva de la geografía, se han venido desarrollando medidas de accesibilidad que permiten evaluar las condiciones existentes y futuras de eficiencia y/o equidad. La eficiencia se valora de tal forma que la distribución de la oferta (los recursos) permita alcanzar el máximo de accesibilidad espacial (Fuenzalida, 2010).

Está documentado que la población que presenta mayor accesibilidad a las unidades de salud, y que por lo tanto, enfrenta precios reales más bajos para alcanzarlas, las utilizará mejor y más oportunamente, generándole mayores beneficios en el cuidado de su salud. Lo contrario sucede con la población que sufre niveles más bajos de accesibilidad, justificando plenamente la importancia de la planeación espacial de los sistemas de salud para lograr las metas de justicia social y espacial (Garrocho, 2007).

Asimismo, la accesibilidad a los equipamientos sanitarios es fundamental desde el punto de vista de la utilización de los servicios, considerando que puede ser favorecida o dificultar su uso por parte de la población (Gutiérrez *et al.*, 2002). Así lo plantean distintas aproximaciones a los factores que inciden en la demanda de un equipamiento sanitario, donde la accesibilidad espacial presenta una clara preponderancia, por sobre otros factores como la especificidad de la oferta, las

relaciones sociales que allí se establecen, el precio o la calificación del personal, entre otros (Ramírez, 2003).

Páez et al. (2010), en su estudio sobre la accesibilidad a los servicios de salud en Montreal desde la perspectiva del adulto mayor, la define como la impedancia de viajes entre la ubicación del paciente y las instalaciones donde la atención es entregada, siendo un enfoque de evidente interés para comprender la dimensión geográfica de la asistencia sanitaria.

Gómez & Luján (1990), abordan la accesibilidad como la capacidad de llegar a determinados lugares, lo que constituye una necesidad social, a fin de determinar los desequilibrios y deficiencias de las redes de transporte que afectan a determinadas regiones. Entre los indicadores utilizados en el desarrollo de su estudio, se encuentran los índices de densidad de red, que relaciona los kilómetros de trazado con la superficie, índices de rodeo y de accesibilidad real e ideal, por tramos y por municipio. La accesibilidad real se considera como la suma de todas las distancias por carretera de un municipio a los restantes, e indica cual es la distancia total de todos ellos.

Los múltiples enfoques utilizados para definir el concepto de accesibilidad han generado un aumento en las diferentes formulaciones para su medición, por ejemplo, en la utilización de diferentes indicadores de accesibilidad según su complejidad. Un ejemplo de esto son los indicadores de accesibilidad absoluta (locacional) y relativa (gravitatorio), aplicados recientemente a estudios de evaluación de infraestructuras de transporte.

El indicador de accesibilidad absoluta es sensible a la localización geográfica de los núcleos de población (Gutiérrez & Monzón, 1993), y proporciona información relevante sobre costes potenciales de transporte asociados a cada nodo en su relación con los demás, teniendo siempre en cuenta la importancia económica de los nodos. Se trata de calcular el promedio de las impedancias que separan a

cada nodo con respecto a los diferentes centros de actividad económica a través de la red (por el camino de mínima impedancia), considerando la renta de estos como factor de ponderación (Loyola & Albornoz, 2009).

El indicador de accesibilidad relativa, en cambio, neutraliza el efecto de la localización geográfica, con el objetivo de resaltar más los efectos de la oferta infraestructural sobre la accesibilidad. Refleja al mismo tiempo los índices de rodeo (estructura geométrica de la red) y el tipo de infraestructura en la accesibilidad a los principales centros de actividad (Gutiérrez & Monzón, 1993).

Diferentes autores han sugerido utilizar nuevos enfoques en el análisis de la accesibilidad, como una herramienta para discutir y revisar las definiciones existentes de este concepto (López, 2007). A continuación se presenta una selección de estos enfoques:

- 1.Enfoque infraestructural: en este caso, la accesibilidad está dirigida exclusivamente a la medición de la actuación del sistema de transporte en un área específica, con medidas de accesibilidad tales como densidad de red o velocidad media de la red.
- 2.Enfoque locacional/geográfico: la accesibilidad es referida al grado de separación entre lugares. Este enfoque es seguido por Morris et al. (1979), quien define la accesibilidad como "una medida de separación espacial de las actividades humanas, que denota la facilidad con que las actividades pueden ser alcanzadas usando un particular sistema de transporte".
- 3.Enfoque potencial de oportunidades: la accesibilidad está relacionada con el volumen de actividad económica que puede ser alcanzado desde cualquier lugar; Hansen (1959), definiéndola como el "potencial de oportunidades para la interacción", o "las posibilidades de utilizar las oportunidades que los equipamientos e instalaciones económicas, sociales, culturales, políticos e instituciones ofrecen" (Domanski, 1979).

4. Enfoque de utilidad (Koenig, 1980; Ben-Akiva *et al.*, 1979): se fundamenta en la teoría del bienestar microeconómico, donde la accesibilidad no es definida como una característica de la localización, sino como la importancia de los individuos en una localización específica.

Como se ha señalado, existe una gran variedad de medidas de accesibilidad, con formulaciones muy diversas, sin embargo, todas ellas permiten evaluar la calidad de las comunicaciones entre diversos puntos situados en la misma zona de estudio. Los múltiples enfoques utilizados para definir el concepto de accesibilidad han generado un aumento en las diferentes formulaciones para su medición, por ejemplo, en la utilización de diferentes indicadores de accesibilidad según su complejidad. La accesibilidad, por lo tanto, es una medida que presenta múltiples formas de obtención según los objetivos que se quieran alcanzar, y constituye un elemento clave para potenciar las regiones menos favorecidas en el acceso a diferentes niveles de servicios.

2.2 Justicia espacial y equipamiento sanitario

Los conceptos de localización, accesibilidad y movilidad pueden ser considerados tres componentes fundamentales de la justicia o equidad espacial, siendo significativamente importante la distribución geográfica de cualquier equipamiento, bien, instalación o servicio de carácter público en el criterio de justicia espacial, ya que los mismos son financiados por toda la población que, por lo tanto, tienen los mismos derechos de usarlos en las mismas condiciones de acceso (Ramírez, 2003).

De esta forma, la justicia espacial depende de la mayor o menor facilidad de acceso, y depende de la variabilidad de las distancias, tiempos y costos económicos que separan a cada individuo del equipamiento más próximo (Bosque Sendra, 1992). Desde la perspectiva del acceso a los equipamientos de salud, al igual que en la localización de otros servicios públicos, no sólo es importante el principio de eficiencia, sino fundamentalmente el de equidad, lo que implica una

superación de desequilibrios territoriales y sociales (Gutiérrez & García Palomares, 2002).

El principio de la eficiencia espacial se encuentra referido al volumen global de recorridos que la población que requiere el servicio debe realizar para utilizar las instalaciones, buscando maximizar los resultados de unos recursos dados; es decir, una distribución eficiente minimizará el coste de utilización por parte de los usuarios (Bosque Sendra, 1992); mientras que la justicia espacial se refiere a la accesibilidad diferencial de un servicio por parte de los distintos grupos de población, es decir al grado de igualdad en la distribución de los servicios que presta cada instalación a la población (Ramírez & Bosque Sendra, 2001).

Ramírez & Bosque Sendra (2001), señalan que en la mayoría de las investigaciones referidas a la provisión de servicios públicos, se ha llegado a la conclusión de lo difícil que resulta establecer el equilibrio justo entre la oferta de servicios y la demanda establecida por los habitantes de un territorio. No obstante, se insiste en que la búsqueda de ese equilibrio, que permita a la población acceder equitativamente a los mismos servicios públicos financiados por toda la sociedad, debe proseguir, aunque lo más común sea descubrir los graves desequilibrios que la realidad contiene.

Fuenzalida (2010), analiza las desigualdades territoriales en la oferta de equipamiento hospitalario público de Chile, cuyos resultados permiten inferir que existe una desigual distribución de dichos equipamientos, tanto en número como en nivel de complejidad, derivados de las diferentes concentraciones/dispersiones poblacionales urbanas/rurales que deben atender, mostrando en algunos casos, servicios de salud claramente infradotados y generando, en relación a la demanda que deben atender, déficit de acceso, calidad de atención y cobertura.

Otro de los conceptos utilizados para evaluar las disparidades territoriales es la cohesión territorial, que se entiende comúnmente como la igualdad de acceso a

servicios y a otros aspectos fundamentales de la vida humana (Thomopoulos *et al.*, 2009). La mayoría de los enfoques existentes para la medición de la cohesión, provienen de la literatura económica, donde la cohesión se define como el proceso de convergencia en los niveles de bienestar regional, a fin de lograr el progreso y la sostenibilidad (Peters, 2003). El concepto de cohesión está, por lo tanto, estrechamente relacionado con la definición de un conjunto de ideas referidas a la equidad y la justicia.

En este contexto, Peters (2003), señala que es imposible reducir las disparidades territoriales sin mejorar notablemente los servicios e infraestructuras de transporte en las regiones donde la falta de acceso a las mismas frena el desarrollo económico. Así mismo, es fundamental evaluar en qué grado la implementación de nuevas infraestructuras implicaría que las disparidades en la accesibilidad a equipamientos se incrementen (reduciendo la cohesión) o se reduzcan (incrementando la cohesión).

En otras palabras, la cohesión territorial es uno de los enfoques de justicia espacial, que centra su atención principalmente en la evaluación de inversión de infraestructuras de transporte desde el punto de vista de las mejoras en la accesibilidad y en la equidad en la distribución espacial de los niveles de accesibilidad, siendo sus aplicaciones poco desarrolladas desde el punto de vista de los equipamientos sanitarios.

Esta perspectiva es especialmente interesante cuando se trata de un servicio que es gratuito en el punto de oferta (como una unidad del sistema público de salud), debido a la importancia de los costos de transporte (es decir, del componente espacial que se debe superar para acceder a la oferta) y de la localización de las unidades de salud con relación a su mercado, aspectos cruciales en términos de la eficiencia y la justicia espacial del servicio (Garrocho, 2007).

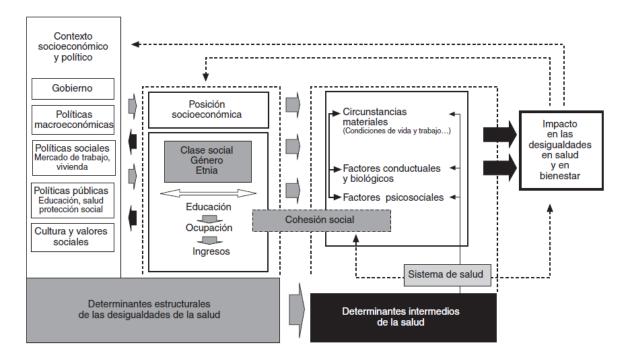
Garantizar el acceso equitativo de la población a las prestaciones tanto de atención primaria como hospitalaria en un sistema de salud público, implica lograr una distribución equitativa de los centros que prestan servicios entre la población. De esta forma la distribución espacial de los centros asistenciales dependerá de la relación del servicio que ofrecen (en función de su complejidad y especialización) y su localización (Rodríguez, 2010).

La aplicación de métodos cuantitativos en la geografía de la salud y específicamente en la planeación espacial de los equipamientos sanitarios, pueden desempeñar un papel relevante en el proceso, siendo capaces de dar más y mejores soluciones locacionales que las seleccionadas por los tomadores de decisiones, y entregar argumentos sólidos para combatir propuestas distributivas incompatibles con los intereses colectivos (Garrocho, 2007).

2.3 Determinantes sociales de la salud

La igualdad en salud puede ser definida como la ausencia de diferencias en salud, injustas y evitables, entre grupos poblacionales determinados social, económica, demográfica o geográficamente (Solar & Irwin, 2007). Por el contrario, "la desigualdad social en salud se refiere a las distintas oportunidades y recursos relacionados con la salud que tienen las personas en función de su clase social, sexo, territorio o etnia, lo que se plasma en una peor salud en los colectivos socialmente menos favorecidos" (Borrel & Artazcoz, 2008).

De esta forma, los determinantes sociales de la salud se entienden como las condiciones sociales en que las personas viven y trabajan, que impactan sobre la salud, es decir, son referentes a "las características sociales en que la vida se desarrolla" (MINSAL, 2010). De manera que se refieren tanto al contexto social como a los procesos mediante los cuales las condiciones sociales se traducen en consecuencias para la salud (Frenz, 2012).


La Comisión de los Determinantes Sociales de la Salud de la Organización Mundial de la Salud (OMS), propone un modelo conceptual para entender los determinante sociales de las desigualdades en salud (Figura 2.1), que se compone de los siguientes elementos (Borrel & Artazcoz, 2008).

1. Determinantes estructurales de la salud: se refiere a los factores estructurales del sistema social, que lo afectan de forma significativa. Algunos de estos aspectos guardan relación con el gobierno y las políticas macroeconómicas (y sociales) que inciden en el mercado del trabajo, a la distribución de la tierra y de la vivienda, así como las políticas públicas relacionadas con la educación y atención sanitaria.

Por otro lado, la posición socioeconómica también es un determinante estructural de las desigualdades en salud, donde se incluye la clase social, el género, la etnia y la raza. Estos aspectos determinan las oportunidades de tener una buena salud, debido a las jerarquías de poder, en las que resultan más beneficiadas las personas de clases sociales privilegiadas (Marmot, 2007). Así, el mayor poder y el mejor acceso a los recursos por parte de las personas más privilegiadas están en relación con el menor poder y el peor acceso de las más desfavorecidas.

2. Determinantes intermediarios de la salud: los factores intermediarios, determinados por los factores estructurales, son los que a su vez determinan las desigualdades sociales en salud. Estos factores están relacionados con los siguientes aspectos: a) circunstancias materiales (como la vivienda, el nivel de ingresos, las condiciones de trabajo, el barrio de residencia, o el ámbito territorial urbano/rural); b) circunstancias psicosociales (falta de apoyo social o situaciones de estrés por ejemplo; c) factores conductuales y biológicos (como los estilos de vida que dañan la salud); d) el sistema de salud (el menor acceso a ellos y su menor calidad para las personas de clases sociales menos favorecidas contribuye a una vulneración de los derechos humanos, principalmente cuando se trata del sistema público).

Figura 2.1: Marco conceptual de los determinantes sociales de la salud. Comisión de los determinantes sociales de la Organización Mundial de la Salud (OMS).

Fuente: Solar & Irwin (2007) en Borrel & Artazcoz (2008)

Los determinantes sociales de la salud tienen una amplia relación con los territorios y las circunstancias donde se ha nacido y se vive (MINSAL, 2010), las que son resultado de la distribución del dinero, el poder y los recursos, que a su vez dependen de las políticas públicas. Explican además la mayor parte de las inequidades sanitarias, esto es, de las diferencias injustas y evitables observadas en y entre los países en lo que respecta a la situación sanitaria. Para Chile el asunto toma especial relevancia debido a la configuración de una sociedad espacialmente desigual, reflejada en diferencias o brechas entre grupos sociales, regiones geográficas y las oportunidades que el desarrollo brinda a sus habitantes (Fuenzalida & Moreno, 2010).

Por su parte, el acceso al sistema de salud es un importante determinante incluido en el marco conceptual propuesto por la Comisión de Salud de la OMS (Ten Have & Bijl, 2002; Crijnen *et al.*, 2002; Mackenbach *et al.*, 1989; Tunstall *et al.*, 2004).

La literatura indica que el transporte, la movilidad y la accesibilidad han sido reconocidos como aspectos significativos de procesos de desigualdad y exclusión social en la ciudad, mientras que los factores que ejercen mayor incidencia en estos procesos son por un lado aspectos socioeconómicos y culturales de los individuos (como ingreso, género, edad, etnia), y por otro lado vinculados a la infraestructura de accesibilidad como la provisión y disponibilidad de transporte público o privado y las condiciones que la estructura urbana presenta (Jirón & Mansilla, 2013), elementos que pueden ser considerados determinantes estructurales e intermediarios de las desigualdades en la salud.

Desde este punto de vista, el transporte se constituye como parte de las barreras geográficas y económicas de acceso para concretar la atención a un servicio de salud, problema que se ve acrecentado por las desconexiones intersectoriales de las políticas públicas para la gestión de la salud y del transporte, considerando que la organización del sistema público de salud requiere asimismo una red de viajes para acceder a un servicio (Gutiérrez, 2014). El déficit crónico en calidad y/o cantidad de servicios e infraestructura urbana es también una condición reconocida de las zonas rurales y rururbanas: ausencia o mala provisión de agua potable, saneamiento y recolección residuos sólidos domiciliarios, escaso alumbrado público, así como la lejanía y deficiente accesibilidad a los equipamientos urbanos de recreación, salud y educación (Gutiérrez, 2014).

Por otro lado, es posible vincular el concepto de accesibilidad con el de vulnerabilidad, en el que se consideran vulnerables las personas y hogares enfrentados a un riesgo de deterioro, pérdida o imposibilidad de acceso a condiciones laborales, habitacionales, sanitarias, educativas, previsionales, de participación y de acceso diferencial a la información y a las oportunidades (Castel, 1997). Asimismo Gutiérrez & Minuto (2006), utiliza el concepto de movilidad vulnerable para referirse a las necesidades de desplazamiento de un grupo social que no se realizan en viajes, o viajes realizados pero en riesgo de

continuidad, reducción o deterioro por la intervención de obstáculos que tornan frágil o débil la movilidad del grupo social.

Según Paez et al. (2010), en su estudio que utiliza un método de expansión que involucra un modelo multinivel y el método GWR, los factores que pueden explicar la accesibilidad a los servicios de salud recaen en características principalmente sociodemográficas, como edad, ingresos, género, estructura del hogar, elementos de movilidad (licencia de conducir, tenencia de automóvil), ocupación y densidad de población. Asimismo, su investigación muestra grandes disparidades en la accesibilidad entre los adultos mayores y no mayores, entre los adultos mayores urbanos y suburbanos, y entre los adultos mayores con vehículo y sin vehículo.

Bagheri et al. (2009), utilizan el modelo GWR para analizar la accesibilidad a centros de atención primaria de salud en zonas rurales, a través de nueve variables independientes de carácter socioeconómico (que conforman un índice de necesidades), cuyos resultados sugieren que, en general, las zonas con mayores tiempos de viaje a los equipamientos de salud, presentan puntuaciones del índice más bajas que en las zonas con menores tiempos de viaje. Comber et al. (2011), analiza la accesibilidad a equipamientos de salud desde la perspectiva de la percepción pública, utilizando variables como el estado de salud, tenencia del automóvil y distancia geográfica.

Entonces, son numerosos los estudios que vinculan la accesibilidad y movilidad con determinantes sociales de la salud, siendo su actuar en ellos fundamental para reducir los efectos negativos de las enfermedades y promover la salud de la población.

CAPITULO 3: ÁNÁLISIS DE LA RED HOSPITALARIA Y MODELACIÓN DE LA ACCESIBILIDAD

3.1 Área de Estudio

El AMC está conformada por once comunas, que corresponden a Concepción, Tomé, Penco, Talcahuano, Hualpén, San Pedro de la Paz, Chiguayante, Santa Juana, Hualqui, Coronel y Lota, las que representan el 9% del total de población regional (INE, 2002). Esta zona alberga 902.712 habitantes en las áreas urbanas, cifra que corresponde a más de la mitad de la población total de la Región del Biobío.

Los centros de Concepción y Talcahuano destacan como los principales articuladores urbanos de este espacio eminentemente industrial, como lo demuestra la distribución de la población económicamente activa (277.327 habitantes). Las once cabeceras comunales están compuestas por 121 distritos censales y 228 centros poblados urbanos y rurales. A continuación se realiza una caracterización de la red hospitalaria pública del AMC y una descripción espacial y estadística de las variables seleccionadas para la modelación.

3.1.1 Caracterización de la situación hospitalaria en el AMC

La red hospitalaria de salud pública del AMC, está conformada por nueve establecimientos pertenecientes a los servicios de salud de Concepción (SSC) y Talcahuano (SST). Las comunas del AMC que pertenecen al SSC son: Concepción, Chiguayante, Hualqui, San Pedro de la Paz, Coronel y Lota, mientras que aquellas que forman parte del SST son: Talcahuano, Hualpén, Penco y Tomé (Tabla 3.1). La distribución espacial de la red de hospitales públicos se observa en la Figura 3.1.

Tabla 3.1: Establecimientos pertenecientes a los SSC y SST, según comuna

S.S. Concepción S.S. Talcahuano Comuna **Establecimiento** Comuna **Establecimiento** Concepción Talcahuano H. Regional H. Higueras Chiguayante H. Higueras H. Regional Hualpén Hualqui H. Regional Penco H. Penco y H. Higueras San Pedro de la H. Regional Tomé H. Tomé y H. Higueras Paz Coronel H. Coronel y H. Regional Lota H. Lota y H. Regional H. Santa Juana y H. Santa Juana Regional

Fuente: Elaboración propia

En Chile existen cuatro categorías de hospitales públicos, diferenciados por su tamaño, número de habitantes y número de camas (Tabla 3.2), y que al mismo tiempo indican su nivel de complejidad (MINSAL, 2010).

Hospitales tipo 1

Se encuentran ubicados en ciudades con más de 500.000 habitantes y deben contar con alrededor de 500 camas. Se localizan en las ciudades cabecera de los servicios de salud, constituyendo el hospital base de cada unidad del sistema, cuando el tamaño del servicio de salud o su ubicación geográfica lo justifique. Es el establecimiento de atención con el mayor nivel de complejidad y tiene adosado un centro de diagnóstico terapéutico. El área de influencia corresponde al territorio geográfico de uno o más servicios de salud. Posee servicio de urgencia organizado, residencia interna diferenciada por servicio clínico y unidades de tratamiento intensivo. El recurso humano comprende casi la totalidad de las especialidades y subespecialidades clínicas. En el AMC caen en esta categoría los Hospitales Base Regional (G.G. Benavente) e Higueras.

Hospitales tipo 2

Se ubican en ciudades con más de 100.000 habitantes como único establecimiento hospitalario, pudiendo tener un centro de referencia de salud adosado y cuentan con menos de 400 camas. También se pueden ubicar en grandes urbes como soporte de los hospitales tipo 1. Cuenta servicio de urgencia diferenciado de la residencia interna, servicios clínicos diferenciados para especialidades básicas, unidades de tratamiento intermedio y, en casos justificados, unidad de tratamiento intensivo. En el AMC los hospitales de Tomé, Coronel y Lota corresponden al tipo 2.

Hospitales tipo 3

Los hospitales tipo 3 se encuentran ubicados en localidades de hasta 50.000 habitantes y cuentan con menos de 200 camas, cuya área de influencia corresponde a las poblaciones asignadas a los consultorios rurales y generales urbanos, no siendo este superior a 70.000 personas. Se pueden ubicar también en grandes ciudades, sirviendo para atender la demanda de hospitalización de menor complejidad de estas localidades. En el AMC no existen hospitales tipo 3.

Hospitales tipo 4

Los hospitales tipo 4 se encuentran ubicados en ciudades con más de 10.000 habitantes y tienen un número aproximado de camas inferior a 100. Su área de influencia comprende las poblaciones asignadas a los consultorios rurales y generales del sector, no siendo esta superior a 30.000 habitantes. Cuenta con atención médica de urgencia las 24 horas del día y puede contar con un consultorio general urbano adosado. En el AMC, los hospitales tipo 4 Corresponden a Penco y Santa Juana.

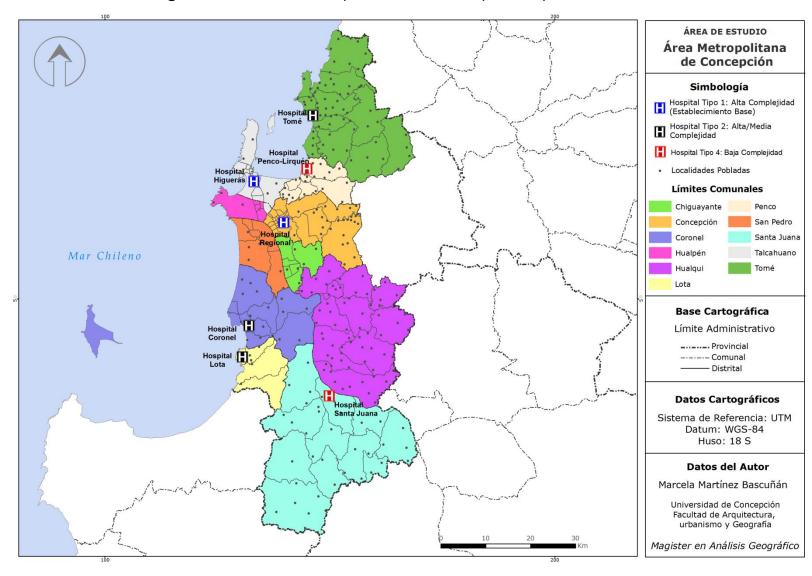


Figura 3.1: Distribución espacial de la red hospitalaria pública del AMC

Tabla 3.2: Tipo de hospitales y nivel de complejidad

	Subsistema de atención			
Nivel de Complejidad	Ambulatorio	Hospitalario		
	Posta Rural			
Baja	C. Rural	Hospital tipo 4		
	C. General Urbano			
Mediana	Centro Referencia Salud	Hospital tipo 3		
Λ I L G	Centro Diagnóstico	Hospital tipo 2		
Alta	Terapéutico	Hospital tipo 1		

Fuente: Elaboración propia en base a Castro, 2007

Respecto a las características de la red hospitalaria pública del AMC, la Tabla 3.3 muestra la dotación de camas⁷, número de egresos hospitalarios⁸ y número de especialidades médicas por establecimiento, los que son considerados insumos en la producción de un hospital.

Tabla 3.3: Características de la red hospitalaria del AMC

Establecimiento	N° Camas	N° Egresos	N° Especialidades
H. Higueras	396	21.560	23
H. Regional G.G.B.	877	36.554	22
H. Tomé	119	4.339	14
H. Coronel	147	7.315	13
H. Lota	112	4.912	10
H. Penco-Lirquén	63	2.325	8
H. Santa Juana	58	1.242	0

Fuente: Elaboración propia en base a DEIS, 2013

La Figura 3.2, muestra la población asignada por establecimiento, donde se observa que cerca de un 80% del AMC recurre a los hospitales base (Regional e Higueras), que a la vez presentan mejor dotación de insumos y generan mayores

⁷ Cama hospitalaria es aquella que se encuentra instalada y dispuesta las 24 horas del día para uso regular de pacientes hospitalizados.

⁸ Es el retiro de los servicios de hospitalización de un paciente que ha ocupado una cama del hospital. El egreso puede darse por alta médica, traslado a otro establecimiento, fallecimiento, retiro voluntario del paciente u otro.

egresos hospitalarios respecto al conjunto de hospitales evaluados. Les siguen en población los hospitales de Coronel, Lota, Tomé, Penco-Lirquén y Santa Juana, este último con carencias de especialidades médicas y número de camas.

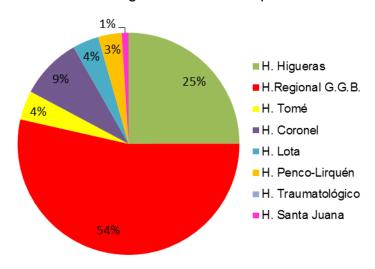


Figura 3.2: Población asignada a la red hospitalaria del AMC

Fuente: Elaboración propia en base a DEIS, 2013

3.1.2 Descripción de las variables con enfoque en los determinantes sociales de la salud

Como señala Borrel & Artazcoz (2008), existen determinantes sociales estructurales e intermediarios que inciden en las desigualdades sociales de la salud. En este apartado se realiza una breve descripción espacial y estadística de las variables seleccionadas para la modelación con enfoque en los determinantes sociales de la salud, desde la perspectiva de la situación socioeconómica, circunstancias de vida y transporte.

Analfabetismo

La distribución espacial del porcentaje de población analfabeta en el AMC respecto a la población total se puede observar en la Figura 3.3A, donde el cuantil

más alto (0.12 a 0.55%) se encuentra presente en todas las comunas a excepción de San Pedro de la Paz, que alcanza un nivel de alfabetismo superior al porcentaje regional (94.1%), siendo la comuna con más años de estudios en la región. El 50% de los distritos pertenecientes a Hualqui se encuentran en el último cuantil con mayor porcentaje de población analfabeta, siendo su nivel de alfabetismo inferior al regional. El promedio de años de estudio que alcanza la comuna es de 8.6, inferior al promedio regional, situación similar a Santa Juana en comparación al nivel regional y el promedio de años de estudio.

Viviendas irrecuperables

Las viviendas irrecuperables (Figura 3.3B), definidas como el porcentaje de viviendas de tipo mediagua, rancho, choza, ruca o móvil, por distrito censal respecto al total de viviendas, alcanzan sus mayores porcentajes (0.05-0.25%) en los distritos pertenecientes a las comunas de Hualqui, Santa Juana, Coronel y Concepción de forma más aglomerada, extendiéndose en menor medida a las comunas de Tomé, Talcahuano y Lota. Se destaca San Pedro de la Paz, que muestra en la totalidad de su territorio bajos porcentajes de viviendas irrecuperables (0 a 0.02%). Espacialmente se puede observar una heterogeneidad en la distribución de estos valores en todo el AMC, pudiéndose identificar altos y bajos porcentajes de viviendas irrecuperables tanto en áreas rurales como urbanas.

Viviendas Rurales

El mayor porcentaje de viviendas rurales (0.04-0.26%) tiene predominancia en distritos pertenecientes a las comunas de Tomé, Hualqui y Santa Juana (Figura 3.3C). En la primera, según la encuesta CASEN 2006, el 12,3% de los habitantes reside en zonas rurales, en la segunda el 16,9% y en la tercera el 42,8%, siendo ésta la segunda comuna con mayor población rural registrada en la provincia (después de Florida), y superior a la ruralidad regional que corresponde al 16,9%

de la población. Asimismo, se observan 60 distritos censales que no registran viviendas rurales (0%), localizados principalmente en la conurbación central del AMC, en las comunas Concepción, Chiguayante, San Pedro de la Paz y Talcahuano, además de algunos distritos censales pertenecientes a Coronel y Lota.

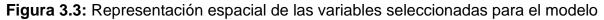
• Tenencia de automóvil particular

Respecto al porcentaje de hogares con automóvil particular en relación al total de hogares (Figura 3.3D), se identifican altos valores en la zona céntrica del AMC compuesto por el área urbana de las comunas de Concepción, Talcahuano, Chiguayante, San Pedro de la Paz y Coronel (0.31 a 1.88%), siguiéndole las comunas del Norte (Penco y Tomé), con porcentajes que varían entre el segundo y el tercer cuantil en áreas urbanas (0.01- 0.3%). Las comunas al Sur del AMC eminentemente rurales (Santa Juana y Hualqui), presentan bajos porcentajes de hogares con automóvil, pudiendo ser un indicador del nivel de ingresos monetarios de la población⁹.

Conectividad

El índice de conectividad (Figura 3.3E), definido como la relación entre el número de arcos y el número de nodos de la red por distrito censal, se encuentra referido a la complejidad estructural de la red vial, donde una mayor cantidad de arcos indica una mayor conectividad. Se puede observar que los índices más altos (1.53 y 2.39) se localizan en las áreas urbanas de Concepción (18 distritos censales en esta comuna), Talcahuano (10 distritos censales), y zonas céntricas de Coronel y Lota. Las zonas con bajos valores de conectividad corresponden a Santa Juana, Hualqui y áreas rurales de Penco y Tomé.

⁹ El promedio comunal de ingreso monetario per cápita en Hualqui y Santa Juana es de \$91.961 y \$103.132 respectivamente, cifras inferiores al promedio regional (\$139.982) siendo a la vez las comunas con menores ingresos del AMC. En materia de desigualdad, Hualqui registra un coeficiente de Gini de 0.47 y Santa Juana de 0.45 (CASEN, 2006).


Recorridos de transporte público

En la Figura 3.3F, se muestra el número de recorridos de transporte público por distrito censal, correspondientes a taxibuses urbanos, interurbanos y rurales, taxicolectivos y tren de pasajeros. El mayor número de recorridos se observa en los distritos correspondientes a las zonas urbanas de Concepción, Talcahuano, San Pedro de la Paz y Tomé (45 a 141 líneas). Por otra parte, existen 24 distritos censales rurales que no cuentan con recorridos de transporte público y 4 distritos censales que cuentan solo con un recorrido (Santa Juana y Hualqui principalmente), por lo que la población en algunos segmentos debe utilizar un modo de transporte alternativo.

En la Tabla 3.4, se muestra el resumen estadístico de las seis variables seleccionadas para la modelación de la accesibilidad a los hospitales públicos del AMC. En relación a las variables censales, los hogares con automóvil particular muestran porcentajes más altos (1.88%), siguiéndole las personas analfabetas (0.55%), las viviendas rurales (0.26%) y las viviendas irrecuperables (0.25%). La conectividad muestra una media de 1.29, con una desviación estándar de 0.5, mientras que la media de los recorridos de transporte público es de 30.2, con una desviación estándar de 30.6.

Tabla 3.4: Resumen estadístico de las variables

Variables	Mínimo	Máximo	Media	Desv.
Personas Analfabetas (%)	0.000	0.555	0.089	0.106
Viviendas irrecuperables (%)	0.000	0.257	0.042	0.048
Viviendas rurales (%)	0.000	0.266	0.029	0.048
Hogares con Automóvil (%)	0.001	1.888	0.242	0.331
Conectividad (índice)	0.000	2.394	1.293	0.508
Recorridos de T. Público (N°)	0.000	141	30.25	30.699

^{*} El número en paréntesis ubicado en la leyenda junto a cada rango, representa la cantidad de distritos censales por cuantil.

3.2 Accesibilidad geográfica a la red hospitalaria pública del AMC

En el presente estudio, para la medición de la accesibilidad a la red hospitalaria se realizan dos análisis: (1) accesibilidad geográfica a la oferta de hospitales públicos, y (2) accesibilidad geográfica al equipamiento más cercano.

(1) Considera la medición de la accesibilidad a más de una unidad hospitalaria, como la media de los tiempos de viaje de las localidades al hospital comunal y al hospital base. (2) Considera la medición de la accesibilidad desde la perspectiva de la necesidad a atención médica de urgencia. Sólo se considera un hospital como unidad de destino (criterio de proximidad), independiente de su complejidad.

3.2.1 Accesibilidad a la oferta de hospitales públicos

La accesibilidad a la red hospitalaria del AMC se encuentra representada por la media de los tiempos de viaje (minutos) desde cada localidad de origen a los equipamientos de destino, considerando sus hospitales asignados. Como se mencionó en el apartado metodológico, existen localidades que pueden acceder a más de un hospital para recibir atención médica. Éste es el caso de las comunas de Coronel, Lota, Santa Juana, Penco y Tomé que tienen la posibilidad de recurrir tanto a su hospital comunal como a su hospital base (H. Regional o H. Higueras). Para el resto de las comunas se mide la accesibilidad respecto a la única unidad hospitalaria designada (hospital base).

Los resultados (Figura 3.4), muestran un patrón de distribución geográfico de los valores que sigue las típicas pautas centro-periferia, donde las áreas de la ciudad donde se localizan las unidades hospitalarias, por lo general, muestran elevados niveles de accesibilidad (0.9 a 24.2 minutos), las áreas adyacentes registran niveles de accesibilidad intermedios (24.2 a 33.1 minutos), y las áreas más alejadas de las unidades de salud (al Sur del AMC), muestran niveles de

accesibilidad desfavorables o muy desfavorables (33.1 a 104.8 minutos), siendo éstas principalmente zonas rurales.

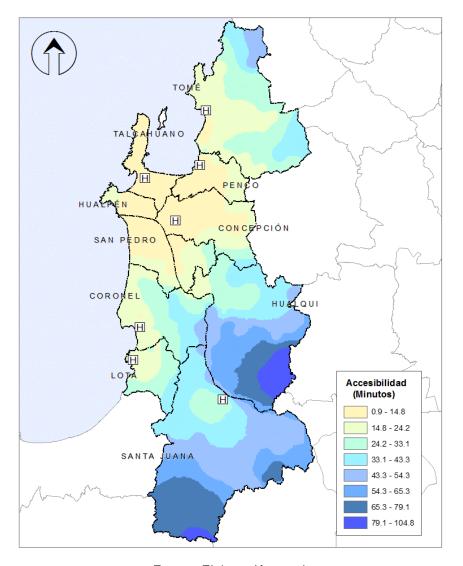


Figura 3.4: Accesibilidad a la oferta de hospitales públicos del AMC

Fuente: Elaboración propia

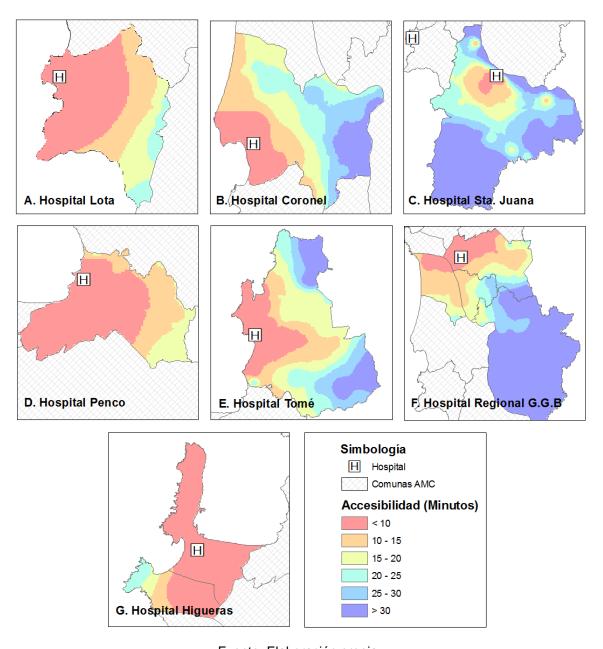
Otro aspecto interesante de destacar, son los óptimos niveles de acceso que se observan en el área urbanizada de Concepción, Talcahuano, Hualpén, San Pedro de la Paz y Penco (conurbación central), que concentran gran parte del equipamiento hospitalario del área de estudio (H. Regional, H. de Penco y H. Higueras), además de presentar una buena conectividad urbana desde el punto de

vista de la topología de la red. En este anillo concéntrico, los tiempos de viaje medios para acceder a las unidades hospitalarias varían entre 0.9 y 14. 8 minutos. Lota y Coronel cuentan con una unidad hospitalaria comunal, sin embargo la población debe desplazarse al hospital base (Regional) para acceder a especialidades médicas que no disponen estas unidades. De esta forma, los tiempos de viaje medios incrementan, debido a la menor proximidad respecto al hospital regional (14.8 a 33.1 minutos), no obstante mantienen niveles de accesibilidad favorables.

Resulta interesante detenerse en algunas excepciones, como es el caso de las comunas de Santa Juana y Hualqui. La primera, si bien cuenta con una unidad hospitalaria dentro de sus límites administrativos, los tiempos de viaje medios desde sus localidades al hospital comunal y al hospital base (Regional) son consideradamente elevados (de 24.2 a 104.8 minutos), dejando en evidencia la inexistencia de áreas con niveles de accesibilidad óptimos (menores o iguales a 15 minutos). La segunda en cambio, no cuenta con una unidad hospitalaria comunal y sólo puede hacer uso de su hospital base asignado para acceder a atención médica (Hospital Regional), donde los tiempos de viaje en su área urbana varía entre 24.2 y 43.3 minutos, y en zonas rurales entre 43.3 y 104. 8 minutos, al igual que Santa Juana.

En general, las variaciones en los niveles de accesibilidad en el AMC responden a las facilidades para alcanzar el equipamiento hospitalario considerando la morfología de la red, aspecto útil para identificar dónde se concentran los problemas de infraestructura, con altos niveles de rodeo y al mismo tiempo bajas velocidades determinadas por la tipología de la vialidad. En estas zonas, como es el caso de las localidades pertenecientes a Hualqui y Santa Juana, el tipo de vialidad predominante corresponde a caminos rurales de tierra y huellas que en algunos casos no permiten en transporte motorizado, por lo que la población en estos segmentos debe utilizar como medio de transporte la caminata.

3.2.2 Accesibilidad al Hospital más cercano


Si se evalúan los niveles de accesibilidad considerando únicamente el equipamiento más cercano, existen algunas variaciones en los resultados arrojados (Figura 3.5). Es relevante destacar que el acceso al equipamiento más cercano tiene una amplia importancia desde el punto de vista de la atención de urgencia, puesto que la población en caso de requerir este servicio recurrirá al establecimiento más próximo.

La Figura 3.5A muestra la distribución de los niveles de accesibilidad para las localidades pertenecientes a la comuna de Lota, donde los tiempos de viaje para acceder a su hospital comunal se reducen respecto al análisis anterior, con una amplia cobertura espacial de accesibilidad óptima (<10 minutos). En esta comuna surge la particularidad de que sólo existen localidades pobladas dentro del área de influencia de dicho nivel de accesibilidad, por lo que si se considera únicamente el servicio de urgencia, el análisis comunal es muy favorable.

La Figura 3.5B muestra la accesibilidad de las localidades al hospital de la comuna de Coronel, donde los valores presentan una mejora significativa respecto al análisis anterior (4 localidades con tiempos de viaje inferior a 10 minutos), mientras que en el resto de la comuna, las localidades emplazadas no presentan valores superiores a 30 minutos.

La Figura 3.5C muestra que por el contrario, la accesibilidad de las localidades de Santa Juana a su unidad hospitalaria comunal registra una menor cobertura de valores óptimos y favorables de accesibilidad, donde 6 de las 35 localidades se alcanzan a beneficiar, considerando que Santa Juana es una de las comunas con mayor cantidad de localidades rurales del AMC. Los tiempos de viaje más bajos alcanzan los 74 minutos.

Figura 3.5: Accesibilidad al equipamiento hospitalario más cercano

Respecto a la accesibilidad de las localidades al hospital de Penco (Figura 3.5D), se puede apreciar que tanto el patrón espacial de accesibilidad, como sus valores, se mantienen prácticamente constantes en ambos análisis, donde los niveles de accesibilidad varían entre óptimos y favorables. A su vez, la comuna de Tomé también se encuentra beneficiada en el acceso a su hospital comunal (Figura

3.5E), con una mayor cobertura de niveles de accesibilidad óptimos donde se concentra la mayor densidad de localidades.

Las Figuras 3.5F y 3.5G no varían en este análisis, puesto que de igual forma deben acceder únicamente a su hospital base (H. Regional y H. Higueras respectivamente). Si bien la accesibilidad al H. Higueras por parte de las comunas de Talcahuano y Hualpén es óptima para gran parte del territorio, no ocurre lo mismo para el H. Regional, particularmente para las localidades de Hualqui. Como se observa en la Figura 3.5F, casi la totalidad de la superficie (a excepción del casco urbano) presenta tiempos de viaje que superan los 30 minutos, llegando a alcanzar hasta 104 minutos en las zonas más periféricas.

En la Tabla 3.5, se muestra la media de los tiempos de viaje por comuna, según los dos análisis anteriores. Se destaca en gris las diferencias entre los valores al considerar la medición de los tiempos de viaje al hospital más próximo.

Tabla 3.5: Resumen de la media de los tiempos de viaje por comuna

Comuna	N° de Localidades	(1)Tiempo medio a la oferta de hospitales (minutos)	(2)Tiempo medio hospital más cercano (minutos)
Chiguayante	5	19.37	19.37
Concepción	25	16.48	16.48
Coronel	15	34.57	16.13
Hualpén	3	17.58	17.58
Hualqui	47	55.2	55.2
Lota	6	22.15	6.57
Penco	20	11.86	7.15
San Pedro de la Paz	5	11.9	11.9
Santa Juana	35	49.14	30.58
Talcahuano	5	7.12	7.12
Tomé	62	25.02	15.32

Fuente: Elaboración propia

En síntesis, la media de los tiempos de viaje desde las localidades a los equipamientos hospitalarios permite identificar por un lado, que las localidades

mejor ubicadas respecto a la demanda registran los índices de accesibilidad más altos, situándose en áreas mayormente urbanas y con altas densidades de población. Por otra parte, las localidades que resultan con los índices de accesibilidad más bajos, son aquellas que se encuentran localizadas en la periferia y que pueden acceder a unidades con poca capacidad de atención, pero que cumplen con su función de asistir a zonas de baja concentración de demanda.

Esto refleja la correspondencia entre la distribución espacial de la demanda y la de la oferta, pero además la correspondencia espacial entre la dimensión de la demanda y la respuesta institucional (Garrocho, 2007). Para efectos de la modelación, se utilizan como variable dependiente los resultados del cálculo de la accesibilidad medida en tiempos de viaje a la oferta de hospitales públicos (primer análisis), que considera la posibilidad de recurrir tanto al hospital más cercano como al hospital base (atención especializada).

3.3 Modelos de regresión OLS y GWR

La creación de un modelo de regresión es un proceso iterativo que implica buscar variables independientes efectivas para explicar la variable dependiente que se intenta modelar o entender, con el objetivo de encontrar el mejor ajuste del modelo.

Previo al ajuste de los modelos OLS y GWR, se llevó a cabo un análisis de correlación entre todas las variables explicativas, descartando aquellas que presentan correlaciones mayores a 0.8 (Bocco *et al.*, 2000; Rojas *et al.*, 2015). En la Tabla 3.6, se muestran las correlaciones bivariadas entre las variables candidatas, donde los coeficientes de correlación más altos se observan entre las variables conectividad y los recorridos de transporte público (0.666), y entre personas analfabetas y viviendas irrecuperables (0.587). No obstante, todas las correlaciones entre las variables independientes están debajo del nivel de riesgo de 0.8.

Tabla 3.6: Correlaciones bivariadas (Pearson r) entre las variables independientes candidatas

	1	2	3	4	5	6
1. Recorridos de T. Público	1					
2. Conectividad	0.666	1				
3. Hogares con Automóvil	0.343	0.215	1			
4. Viviendas Rurales	-0.483	-0.530	-0.293	1		
5. Viviendas irrecuperables	0.215	0.160	-0.072	0.002	1	
6. Población Analfabetas	0.114	0.085	-0.062	0.024	0.587	1

Entonces, el modelo final propuesto incorpora seis variables independientes: una relativa a la población (porcentaje de personas analfabetas), una relativa a los hogares (porcentaje de hogares con tenencia de automóvil particular), dos relativas a las características de la vivienda (porcentaje de viviendas rurales e irrecuperables), y dos asociadas al transporte (índice de conectividad y número de recorridos de transporte público), y todas utilizan como unidad espacial al distrito censal.

El objetivo es generar un modelo con una alta capacidad explicativa, con un número bajo de variables independientes, y que éstas sean fáciles de obtener y relevantes desde la perspectiva de la planificación.

Para las siete variables (incluyendo la variable dependiente) se aplicó el índice de Moran, con la finalidad de comprobar la presencia o no de autocorrelación espacial en sus distribuciones. La Tabla 3.7, muestra que para la totalidad de las variables, los resultados del índice de Moran sugieren presencia de autocorrelación espacial significativa estadísticamente, con una pauta de distribución agrupada (*clustered*). Así, las puntuaciones Z y los valores P indican que se rechaza la hipótesis nula (que establece que los valores de entidades están distribuidos en forma aleatoria en el área de estudio).

Tabla 3.7: Autocorrelación espacial para la variable dependiente y las independientes

Variable	Índice de Moran	Pauta	Z-score	P-value
Tiempos de viaje	0.780	Agrupación	19.217	0.000
Recorridos T. Público	0.502	Agrupación	12.346	0.000
Conectividad	0.687	Agrupación	16.728	0.000
Hogares con automóvil	0.201	Agrupación	5.231	0.000
Viviendas rurales	0.342	Agrupación	8.631	0.000
Viviendas irrecuperables	0.511	Agrupación	11.369	0.000
Población analfabeta	0.454	Agrupación	6.385	0.000

3.3.1 Modelo OLS (Mínimos Cuadrados Ordinarios)

El ajuste del modelo global (OLS) ofrece un R² ajustado 0.67, esto significa que con las seis variables seleccionadas se explica la variabilidad en los tiempos de viaje a los hospitales con una precisión de más de un 60% (Tabla 3.9). Además, para un grado de confianza del 95%, tres de las seis variables explicativas son significativas, correspondientes a la conectividad, hogares con automóvil y viviendas irrecuperables, todas presentan los coeficientes esperados. Las tres variables no significativas en el modelo global se consideran de igual forma para el modelo local (GWR), con el objetivo de evaluar espacialmente la significancia de sus coeficientes.

Los valores de VIF¹⁰ (todos por debajo del umbral de 7.5) indican que no hay problemas de multicolinearidad entre las variables explicativas. El elevado valor del estadístico F (42.77) y su bajo valor P asociado (0,000000*) denotan la elevada significación estadística del modelo (Tabla 3.8 y 3.9).

¹⁰ Es un indicador de redundancia entre las variables explicativas, cuando sus valores superan el umbral de 7.5.

Tabla 3.8: Resumen modelo OLS¹¹

Variable	Coeficiente	StdError	Estadística t	Probabilidad	VIF
Intercept	60.183862	4.389099	13.712122	0.000000*	
Recorridos T. Público	-0.067006	0.053620	-1.249644	0.084646	2.113207
Conectividad	-28.414235	3.535520	-8.036791	0.000000*	2.515939
Hogares con automóvil	-8.530927	3.765749	-2.265400	0.000179*	1.218714
Viviendas rurales	43.943766	29.263301	1.501668	0.321395	1.574576
Viviendas irrecuperables	85.806702	30.530654	2.810510	0.044428*	1.679720
Población analfabeta	26.089914	15.744198	1.657113	0.060757	1.560206

Tabla 3.9: Diagnóstico modelo OLS

N° de observaciones	119		
N° de variables	7		
R² ajustado	0.677032		
AIC	941.729		
F-Statistic	42.774	Prob(>F), (7,111) degrees of freedom	0.000000*
Koenker (BP) Statistic	27.245	Prob(>chi-squared), (7) degrees of freedom	0.000301*
Jarque-Bera Statistic	135.512	Prob(>chi-squared), (2) degrees of freedom	0.000000*

Fuente: Elaboración propia

El estadístico Jarque-Bera¹² presenta un p-value significativo (0.000000*), lo que demuestra que los residuales de la regresión no presentan una distribución normal teórica. Asimismo, para un modelo especificado correctamente, los residuos se deben distribuir aleatoriamente, sin embargo los resultados del índice de Moran aplicado indican presencia de autocorrelación espacial (Figura 3.6).

Respecto al estadístico Koenker (BP), que prueba la variabilidad espacial de las variables, presenta un p-value estadísticamente significativo (0.000301), lo que indica que la relación entre las variables explicativas y la dependiente es noestacionaria (es diferente en distintas zonas espaciales del área de estudio).

¹² Test que prueba si los residuos de un modelo de regresión se encuentran normalmente distribuidos.

¹¹ Un asterisco junto al número indica un valor P con significancia estadística.

Índice de Moran: 0,251039
puntuación z: 6,372935
Valor p: 0,000000

Significance Level
(p-value)
(2-score)
(2-58
-1.96
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.96
-2.58
-1.96
-2.58
-1.96
-1.65
-1.65
-1.96
-2.58
-1.96
-1.96
-2.58
-1.96
-1.96
-2.58
-1.96
-1.96
-2.58
-1.96
-1.96
-2.58
-1.96
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-1.65
-

Figura 3.6: Autocorrelación espacial aplicada a los residuos de la regresión OLS

Fuente: Elaboración propia en base a ArcGIS 10.2

Por tanto, la decisión de recurrir a la regresión espacial se justifica cuando se produce una mejora en el ajuste global o cuando se detecta la presencia de agrupaciones espaciales (*clusters*) en la distribución de los residuos, que debe corregirse (Gutiérrez *et al.*, 2012). Considerando estos aspectos, existen evidencias suficientes para recurrir a la regresión geográfica ponderada (GWR).

3.3.2 Modelo GWR (Regresión Geográfica Ponderada)

El R² ajustado obtenido en el modelo GWR es de 0.87, lo que supone una mejora muy importante con respecto al modelo OLS. También resulta un valor más reducido del AIC¹³, así como de otros parámetros (Sigma y Desviación Estándar) referidos al error en el modelo (Tabla 3.11).

-

¹³ El Criterio de información de Akaike (AIC) es una medida de la adaptación/rendimiento del modelo, mientras más bajo sea su valor mejor será su rendimiento. Este parámetro es útil para evaluar varios modelos candidatos utilizando la misma variable dependiente.

Tabla 3.10: Resumen modelo GWR

Variable	Coef. Mínimo	Coef. Máximo	Media	Std. Desv.
Intercept	15.178001	86.102824	34.802297	17.505386
Recorridos T. Público	-0.483839	0.0257084	-0.105142	0.1373793
Conectividad	-39.051104	-4.9340234	-13.078798	7.6118113
Hogares con automóvil	-15.400156	1.0898569	-3.495208	4.4159298
Viviendas rurales	-59.439217	156.86916	68.01176	52.067867
Viviendas irrecuperables	-44.194094	569.27061	57.179389	113.795979
Población analfabeta	288.136336	-20.049131	-23.631059	50.444226

Tabla 3.11: Diagnóstico modelo GWR

Número de variables	7
R ² ajustado	0.870961
AIC	853.8909
Sigma (σ)	7.808072
Residual Squares	5250.034

Fuente: Elaboración propia

Asimismo, el análisis de los residuos también muestra mejores resultados en la GWR que en la OLS. Esta mejora se comprueba estadísticamente (Tabla 3.12), donde el valor calculado del índice de Moran para los residuos se aproxima mucho más al valor esperado en el modelo GWR, mostrando además una menor varianza y mayores probabilidades de distribución aleatoria (valores P y puntuaciones Z).

Tabla 3.12: Índice de Moran en los residuos (OLS y GWR)

	Método OLS	Método GWR
I Calculado	0.251	0.019
I Esperado	-0.008	-0.008
Varianza	0.001	0.000
Z-score	6.372	0.933
p-value	0.000	0.350
Pauta	Agrupación	Aleatoria

Indice de Moran: 0,019384
puntuación z: 0,933982
Valor p: 0,350313

(Random)

Significant

Significant

Significance Level (p-value)
(p-

Figura 3.7: Autocorrelación espacial aplicada a los residuos de la regresión GWR

Fuente: Elaboración propia en base a ArcGIS 10.2

Además, la Figura 3.7, muestra que los residuos en este modelo se distribuyen aleatoriamente, por lo que se supera el problema de la autocorrelación espacial encontrada en el modelo OLS.

Por otra parte, la distribución espacial de los ajustes locales producidos con la GWR (R² locales), permite conocer la variación espacial del poder explicativo del modelo. La distribución del R² local a nivel distrital, varía entre 0.60 y 0.80 (Figura 3.8), teniendo el modelo una mejor capacidad explicativa en la zona central del AMC (distritos pertenecientes a las comunas de Concepción, Hualpén y Talcahuano), incrementándose los R² por encima del 0.73.

Esta tendencia muestra cómo el ajuste disminuye en aquellas zonas donde hay menor densidad de distritos (al Sur del AMC), de manera que estas tienen un número bajo de vecinos. Al contrario, en las zonas con más densidad, aparecen más vecinos a la hora de realizar el ajuste del modelo (zona Centro), incrementándose los R² por encima del 0.71.

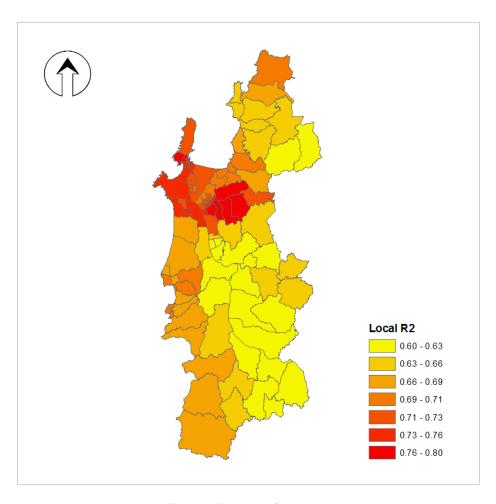
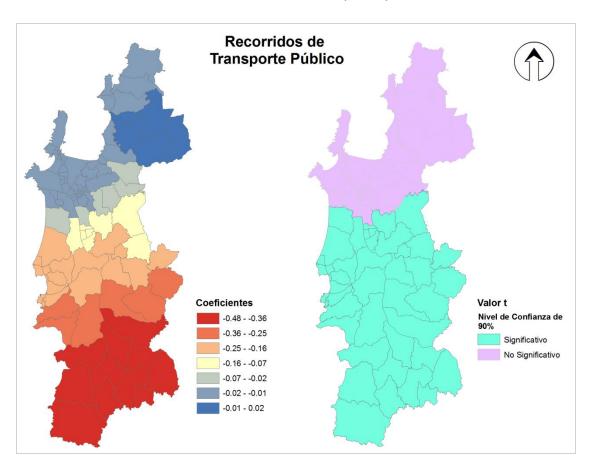


Figura 3.8: Distribución espacial de los R² locales modelo GWR


Para el análisis de la variabilidad espacial de los coeficientes locales de las variables explicativas (elasticidades) en el modelo GWR, a continuación se muestra su representación espacial junto con los valores t estadísticamente significativos (al nivel de 90%, con valores t mayor a 1.64) y no significativos en algunos distritos censales.

La variable recorridos de transporte público, presenta valores significativos al Sur del AMC, abarcando las comunas de Santa Juana, Hualqui, Lota Coronel, parte de San Pedro de la Paz, Chiguayante y área rural de Concepción. Como se observa en la Figura 3.9, estos coeficientes son más altos en los distritos pertenecientes a la comuna de Santa Juana (-0.48 y -0.36), indicando una mayor incidencia de esta

variable en los tiempos de viaje a los establecimientos hospitalarios asignados a dicha comuna.

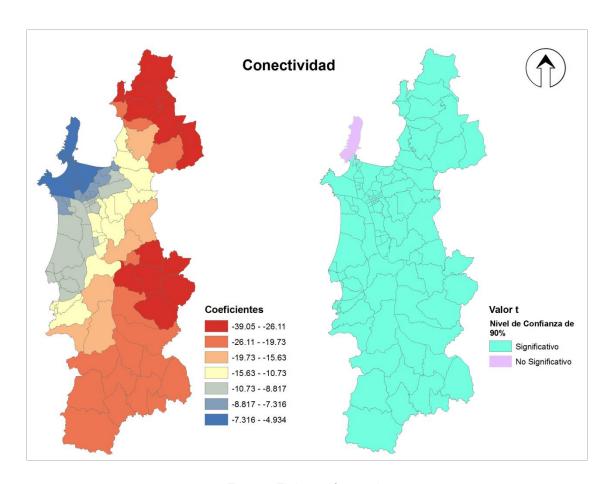

Desde el punto de vista del transporte, la importancia de esta variable es fundamental en la accesibilidad a los establecimientos de salud, especialmente en Santa Juana y Hualqui, donde en la primera comuna solo dos de sus once distritos disponen de recorridos de transporte público, correspondientes a dos líneas de buses interurbanos, mientras que el resto del territorio no cuenta con recorridos de transporte público. En la segunda, cinco de sus diez distritos no cuentan con transporte público, mientras que otros tres están sujetos a la utilización del tren.

Figura 3.9: Distribución espacial de los coeficientes locales y valores t modelo GWR: Recorridos de transporte público

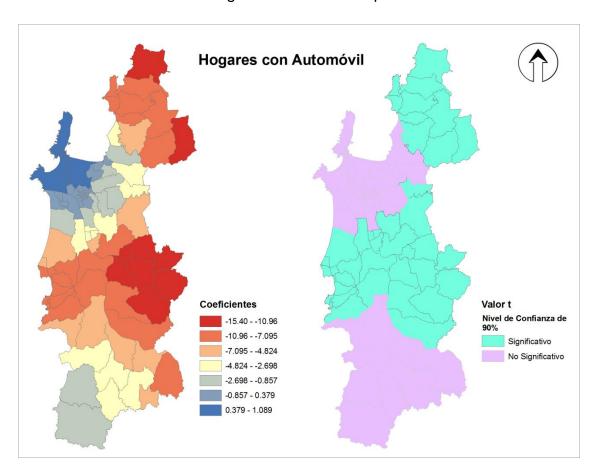

Por otra parte, los coeficientes de la variable conectividad (Figura 3.10) son estadísticamente significativos en la mayor parte del AMC, a excepción de la Península de Tumbes (Talcahuano), donde la complejidad estructural de la red vial no influye de manera significativa en los tiempos de viaje a los establecimientos hospitalarios. Se puede observar que la relación de la variable conectividad y tiempos de viaje es negativa en toda el área de estudio. La media de los coeficientes de esta variable fue de -13.07 (Tabla 3.10), pero con valores muy elevados en la zona Sur (Hualqui - Santa Juana) y al Norte (Tomé) del AMC (-39.05 y -26.11), indicando que tiene una marcada incidencia en los tiempos de viaje a hospitales.

Figura 3.10: Distribución espacial de los coeficientes locales y valores t modelo GWR: Conectividad

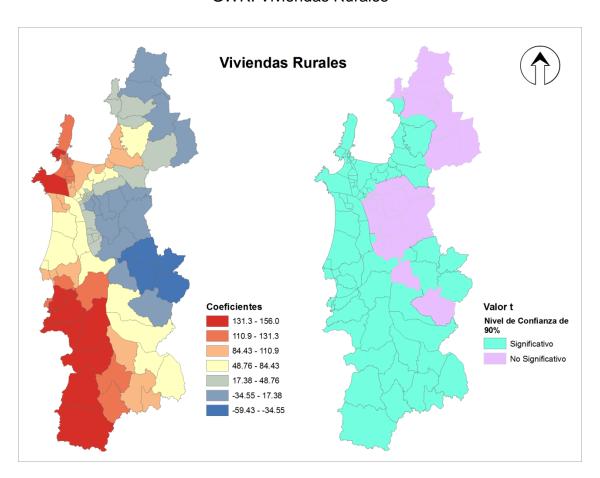

La variable Hogares con automóvil (Figura 3.11) presenta una relación negativa respecto a la variable dependiente, donde los mayores coeficientes varían entre -15.4 y -4.8, indicando una fuerte incidencia de esta variable en los tiempos de viaje. De esta manera, el mayor o menor número de hogares con tenencia de automóvil particular en estas zonas indican una disminución o incremento en los respectivamente. viaje a los hospitales Los coeficientes estadísticamente significativos se observan en los distritos pertenecientes a las comunas de Tomé (al Norte del AMC), en las áreas rurales de Concepción, Chiguayante y San Pedro de la Paz (zona Centro), y en Hualqui, Coronel y Lota (al Sur). Los distritos pertenecientes a Santa Juana (al Sur) y en la conurbación central del territorio no evidencian coeficientes estadísticamente significativos.

Figura 3.11: Distribución espacial de los coeficientes locales y valores t modelo GWR: Hogares con automóvil particular

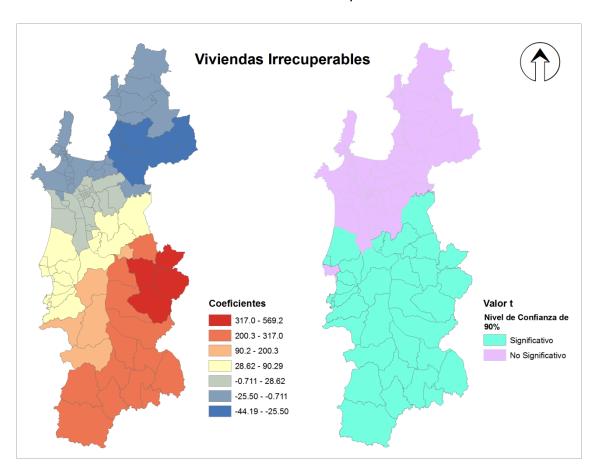

En relación a la variable viviendas rurales (Figura 3.12), ésta presenta valores significativos al Sur del AMC, en los distritos censales pertenecientes a las comunas de Santa Juana, Lota, Coronel, parte de Hualqui, y en la zona central del AMC, específicamente en las comunas de Talcahuano, Hualpén y parte de Penco. Es en esta área, donde se observan los valores más altos de los coeficientes, con una relación positiva que incide en los tiempos de viaje a los hospitales. En los distritos donde se registra un cambio de signo (relación negativa respecto a la variable dependiente), los coeficientes no son estadísticamente significativos (a excepción de cinco distritos censales pertenecientes a Hualqui), lo que se observa al Oriente del AMC. Casi la totalidad de Concepción presenta valores no significativos, así como también los distritos censales al Norte de Tomé.

Figura 3.12: Distribución espacial de los coeficientes locales y valores t modelo GWR: Viviendas Rurales

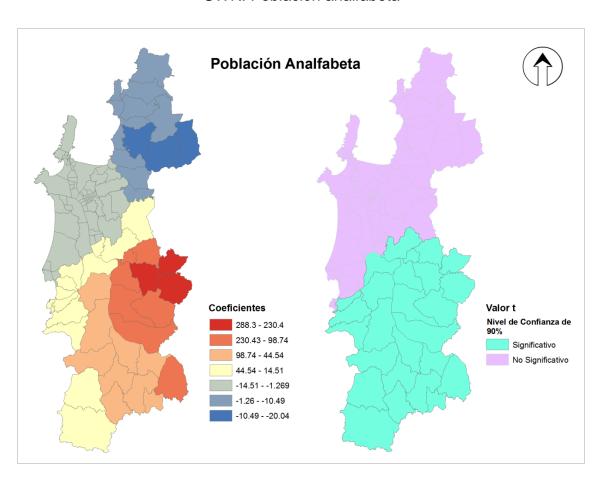

Respecto a las viviendas irrecuperables (Figura 3.13), se presentan valores estadísticamente significativos al Sur del AMC (distritos pertenecientes a Hualqui, parte de Concepción, Coronel, Lota y Santa Juana), siendo los coeficientes particularmente altos en las comunas de Santa Juana y Hualqui (569.2 - 200.3). Los coeficientes indican una relación positiva con la variable dependiente, en los distritos donde aparece significativa, mostrando que en estas zonas, la presencia de viviendas irrecuperables se condiciona con el incremento de los tiempos de viaje a los hospitales.

Figura 3.13: Distribución espacial de los coeficientes locales y valores t modelo GWR: Viviendas Irrecuperables

Finalmente, la población analfabeta (Figura 3.14) muestra sus coeficientes más altos al Sur del AMC, en los distritos pertenecientes a Santa Juana y Hualqui (98.7-288.3), donde son estadísticamente significativos, junto con los distritos censales de Lota, y otros pertenecientes a Coronel, Chiguayante y Concepción. En estas zonas, la variable presenta una relación positiva con los tiempos de viaje a hospitales. El hecho de que el nivel de alfabetismo tenga incidencia positiva en los tiempos de viaje a la salud es un aspecto importante a considerar, pues es en esta zona del AMC donde se localizan los centros poblados más desfavorecidos tanto en la accesibilidad, como en las características socioeconómicas y de transporte.

Figura 3.14: Distribución espacial de los coeficientes locales y valores t modelo GWR: Población analfabeta

3.4 Discusión

En este trabajo se encontró que aproximadamente el 4.1% de la población (37.228 personas) que vive en el AMC (900.000 personas), tiene un acceso desfavorable o muy desfavorable a los establecimientos hospitalarios públicos (tiempos de viaje superiores a 30 y 45 minutos respectivamente). El 32.8% de esta población habita en zonas rurales, particularmente en las comunas de Tomé, Santa Juana y Hualqui, en las que se identificaron áreas de baja accesibilidad a la atención hospitalaria. En estos lugares, la población presenta tiempos de viaje altos, y a la vez alta necesidad en el acceso a los servicios de atención de salud.

En la modelación de la accesibilidad a hospitales utilizando variables socioeconómicas y de transporte, se encontraron resultados interesantes desde el punto de vista de las variaciones locales de los coeficientes.

Por un lado la variable Población Analfabeta, mostró en ambos modelos una relación positiva con la variable dependiente, indicando una incidencia de ésta en los tiempos de viaje a los hospitales con mayor fuerza al Sur del AMC (230.4 - 288.3), según el modelo GWR. Son justamente estos distritos los que presentan mayores índices de analfabetismo, algunos de los cuales se encuentran altamente desfavorecidos en el acceso a atención hospitalaria (áreas rurales de Santa Juana, Hualqui y Coronel).

Esta problemática se acrecienta, al evidenciar que la educación como indicador de posición social¹⁴ es un fuerte determinante de las inequidades en morbimortalidad (Galobardes *et al.*, 2006), por ejemplo, en los factores de riesgo para la salud, en la esperanza de vida, o en la adherencia al tratamiento médico. De esta forma, una baja alfabetización general puede afectar la salud de las personas directamente, debido a que limita su desarrollo personal, social y cultural, además

¹⁴ Identificando el nivel de analfabetismo, los años de escolaridad, la deserción escolar, la cobertura educacional - universal, y los resultados en pruebas de medición de aprendizaje.

de impedir el desarrollo de la alfabetización para la salud. Este último concepto es crucial, ya que supone mejorar el acceso de las personas a la información sanitaria y su capacidad para utilizarla con eficacia con el objetivo de mejorar sus condiciones personales de vida y de la comunidad (OMS, 1998).

De igual forma, las características de la vivienda, tales como la tipología, inciden en las condiciones de vida de los individuos. Se sabe que en las viviendas deficientes o irrecuperables, se localiza la población de mayor riesgo de afectación por enfermedades relacionadas con el saneamiento básico y el entorno, por ello, se le adjudica a la vivienda el papel de determinante social de salud (Goldstein, Novick, & Schaefer, 1990). En el AMC se identificó una fuerte relación positiva entre esta variable y los tiempos de viaje a los hospitales públicos, con altos coeficientes al Sur del territorio (200.3 – 569.2), cuyo comportamiento espacial es similar a la población analfabeta.

El ámbito geográfico en que se emplazan las viviendas (rurales o urbanas), es también una variable relevante en los tiempos de viaje a la atención hospitalaria. La investigación en geografía, epidemiología y salud pública ha demostrado que el lugar donde la gente vive afecta de manera significativa sus resultados de salud y por consecuencia, sus necesidades de desplazamiento para alcanzar atención hospitalaria (Howe 1986; Davey Smith *et al.*, 1998; Diez-Roux *et al.*, 1997; Tunstall *et al.*, 2007). Altos coeficientes de la variable viviendas rurales se muestran en los distritos censales al Sur-Oeste del AMC (131.3-156.0), donde la población muestra mayores índices de ruralidad, y en que los tiempos de viaje son superiores a 30 minutos para acceder a un hospital.

La tenencia del automóvil, si bien no constituye directamente un determinante de la salud, si guarda relación con la posición social (ingresos, ocupación) de la población. Las variables relacionadas con la posición o nivel socioeconómico son ampliamente utilizada en investigación en salud (Geyer *et al.*, 2006; Lahelma *et al.*, 2004). Asimismo, la existencia de diferencias prevenibles en salud según

posición social es una realidad indiscutible, tanto en Chile como en el resto del mundo (Naess *et al.*, 2005; Rogenurd & Zahl, 2006).

Se encontraron altos coeficientes de la variable automóvil por hogar al Norte y Centro-Sur del AMC, principalmente en las comunas de Tomé, Coronel y Hualqui (-7.09 y -15.4), mostrando en ambos modelos una relación negativa respecto a la variable dependiente. Esta variable es relevante, puesto que el automóvil particular es un modo que permite reducir los tiempos de viaje en el traslado de pacientes a las unidades hospitalarias y de esta forma mejorar la oportunidad al tratamiento¹⁵.

Por otra parte, se encontró que en el AMC existen aproximadamente 13.491 habitantes que no cuentan con recorridos de transporte público, y 5.205 habitantes que cuentan sólo con un recorrido, siendo éstos pertenecientes principalmente a Hualqui, Tomé y Santa Juana, desfavorecidos además en términos de accesibilidad a atención hospitalaria (más de 30 minutos de viaje). El modelo GWR muestra una relación negativa de esta variable respecto a la variable dependiente, donde los mayores coeficientes se observan al Sur del AMC.

En relación a la conectividad de la red, en ambos modelos se observa que su relación con la variable dependiente es negativa, lo que indica que una mayor conectividad determina la reducción de los tiempos de viaje a las unidades hospitalarias, siendo estadísticamente significativa en todo el área de estudio, a excepción de la Península de Tumbes.

La disposición de recorridos de transporte público y el nivel de conectividad pueden ser considerados determinantes estructurales de la salud, pues son resultado de la distribución del dinero, poder y recursos, siendo aspectos

62

¹⁵ Algunos ejemplos de la importancia de los tiempos de viaje a las unidades hospitalarias en la vitalidad de los pacientes se pueden ver en Morrison *et al.* (2000).

significativos en los procesos de desigualdad e inequidades sanitarias de un territorio.

En lo que respecta al transporte al interior de las ciudades, junto al diseño urbano, estos son factores relevantes para la salud. Un buen diseño del transporte público, ha evidenciado la capacidad de modificar los patrones conductuales de la población (determinantes intermediarios de la salud), además de facilitar el acceso a centros asistenciales de salud (MINSAN, 2010).

Es evidente entonces que las desigualdades en salud son consecuencia de las circunstancias en las cuales las personas desarrollan su vida, a partir de un contexto socioeconómico y político (Tarlov, 1996), impactando en las posibilidades de acceso y utilización del recurso sanitario.

Por ejemplo, es sabido que los mayores índices de mortalidad se dan principalmente en los grupos de población pertenecientes al sector rural, en las mujeres, en los adultos mayores y en las personas de nivel educacional más bajo (MINSAL, 2010), y como señala Bosanac, Parkinson, & Hall. (1976), son justamente las poblaciones de "difícil acceso" las que se caracterizan por presentar atributos sociodemográficos asociados con necesidades médicas altas, como se pudo observar en el AMC.

El conjunto de estos determinantes es fundamental en términos no solo de la accesibilidad, si no de la concreción del servicio (Gutiérrez, 2009). Si bien este trabajo se enfoca en la demanda de servicios de salud como una necesidad expresada (sin que eso signifique que el paciente tuvo o no efectivamente acceso a estos servicios), el enfoque de la utilización de servicios de salud, en cambio, se refiere a la cantidad de veces que el paciente recibió estos servicios, y si efectivamente llegó a concretar la atención médica, aspecto vinculado a la movilidad a la salud (Curtis & Macminn, 2007; Gutiérrez, 2014; Martínez & Garmendia, 2008).

Evaluar entonces la distribución geográfica de la población respecto a las unidades hospitalarias, así como la incidencia de sus factores socioeconómicos, demográficos y de transporte, es fundamental para contribuir en la reducción de las brechas de inequidad en la accesibilidad a los servicios de salud entre la población.

Siguiendo esta línea, los "Objetivos Sanitarios para la Década de 2011-2020" establecidos en la Estrategia Nacional de Salud (MINSAL, 2010), describen las metas nacionales que el país se ha propuesto alcanzar en el ámbito de la salud, en que destacan como lineamientos estratégicos las siguientes temáticas¹⁶:

- Inequidad y posición social: disminuir la gradiente de inequidad en salud relacionada con posición social.
- Inequidad y ubicación geográfica: disminuir la brecha de inequidad en salud relacionada con ubicación geográfica.

De esta forma, en Chile se ha generado un creciente interés por reducir las inequidades en salud de la población a través de la mitigación de los efectos que producen los determinantes sociales y económicos de la salud, con una fuerte componente geográfica. Sin embargo, no se vislumbra en la Estrategia Nacional de Salud (2010) una integración eficiente entre las políticas de salud y las políticas de transporte, manifestándose una visualización deficiente de la condición intersectorial del viaje, de la magnitud y forma de su intervención en el acceso a servicios hospitalarios.

_

¹⁶ Objetivo Estratégico N° 5, Estrategia Nacional de Salud, 2011-2020.

CAPITULO 4: CONCLUSIONES

En el análisis de la accesibilidad a la oferta de hospitales públicos del AMC, se identificaron áreas desfavorecidas en términos de tiempos de viaje, siendo estos distritos pertenecientes principalmente a las comunas de Hualqui y Santa Juana, al Sur del AMC. Como fue señalado en la discusión, en estas zonas la población presenta tiempos de viaje altos (superiores a 30 minutos), y a la vez, por sus características sociodemográficas, una mayor necesidad en el acceso a los servicios de atención de salud.

La medición de la accesibilidad a los equipamientos de salud hospitalaria a escala AMC no sólo permitió identificar áreas del territorio con problemas críticos, sino también profundizar en el análisis de la desigualdad de acceso, aspecto complejo de evaluar bajo las aportaciones clásicas en geografía que utilizan el concepto de accesibilidad desde el área de servicio o cobertura de un equipamiento hospitalario, considerando como elemento fundamental únicamente la localización del equipamiento a servir.

Por tanto, es importante la reflexión de la incidencia de la accesibilidad desde la perspectiva del transporte en los desequilibrios territoriales de determinados núcleos, principalmente asociada a los aspectos relevantes como la salud pública. Para este propósito, los modelos de accesibilidad, entendidos como los medios de superación de la distancia, se presentan como un importante instrumento para la determinación de las desigualdades existentes en el territorio, y buscar alternativas que las solucionen.

Los resultados de la modelación a nivel local, permitieron identificar dónde el modelo tiene un mayor y menor ajuste (R²), cómo cambia la relación entre las variables en el espacio (coeficientes) y con qué significación estadística. Este trabajo aporta evidencia de las ventajas de considerar el análisis local en los

estudios relacionados con la accesibilidad a la salud, siendo éstos en Chile poco desarrollados desde una perspectiva geográfica y de transporte.

Un aspecto relevante en la modelación de la accesibilidad es la técnica utilizada en este trabajo (OLS y GWR). El modelo de regresión global (OLS), mostró que tres de las seis variables fueron estadísticamente significativas, sin embargo los resultados de la regresión global son sólo promedios de toda la región de estudio y pueden ocultar una gran cantidad de variación espacial interesante en las relaciones que se muestran en el análisis local (Bagheri *et al.*, 2009).

Los resultados del modelo global son difíciles de visualizar espacialmente, debido a que se aplica una estimación global de parámetros para cada variable a todos los puntos del área de estudio, independientemente de su ubicación. Este es un problema cuando se trata de entender cómo las relaciones entre variables cambian a través del espacio. En tanto, el modelo GWR genera un ajuste local en múltiples ubicaciones, repitiendo el proceso para todas las variables.

Comparando los resultados locales y globales estadísticamente, en este trabajo se encontró que el modelo de regresión geográficamente ponderada (GWR) ofrece resultados significativamente mejores, en el cual las variables utilizadas explican en un 87% los tiempos de viaje a hospitales. Además, al proveer resultados específicos para cada localización, éstos pueden ser usados como evidencias para apoyar políticas o tomas de decisiones locales; por eso con frecuencia estas técnicas son llamadas "basadas en el lugar" (Gutiérrez *et al.*, 2012).

Por otro lado, desde el punto de vista de las variables seleccionadas para este trabajo, las características socio-demográficas basadas en el censo para el análisis de las desigualdades de salud a escala local, con enfoque en los determinantes de las necesidades de atención de salud, se utilizan cada vez más en la geografía de la salud (Chateau *et al.*, 2012; Andersen *et al.*, 2007). Por ejemplo, los estudios sobre desigualdades sociales en salud han mostrado, en

ambos sexos y para todas las edades, cómo las clases sociales más desfavorecidas y las personas o áreas geográficas más pobres tienen peores indicadores de salud que la población de las clases sociales más privilegiadas o las personas o zonas geográficas con mayor riqueza (Benach & Amable, 2004).

Asimismo, la aplicación de procedimientos de análisis geográfico orientados a la resolución de cuestiones empíricas en el campo de la Geografía de la Salud, se presenta, en la actualidad como un ámbito de investigación de gran dinamismo, al encontrarse apoyado en sus procedimientos metodológicos por la actual tecnología de los Sistemas de Información Geográfica (Buzai, 2009).

Es importante señalar que una de las limitantes de este trabajo, es que aborda el acceso a la salud como un componente lineal del viaje (relación entre un origen y un destino), y no desde la perspectiva de la utilización y/o concreción de prestaciones de salud. Para ello, los estudios de movilidad en salud sustituyen este vínculo por la relación entre una necesidad (recibir atención en el sistema público de salud) y su satisfacción (concretar la prestación de salud), siendo el primer abordaje insuficiente en este tipo de investigaciones, especialmente en el estudio de casos que requieren tratamientos médicos prolongados o controles periódicos (Gutiérrez, 2009).

Sin embargo, los modelos de accesibilidad geográfica tienen un enorme potencial para contribuir en el desarrollo de políticas y debatir sobre la forma de lograr equidad en la accesibilidad a los establecimientos hospitalarios. Los modelos son un recurso crítico que pueden ser utilizados por los planificadores para dar prioridad a la localización y asignación de los servicios de salud (Brabyn & Skelly, 2002).

Respecto a las futuras líneas de investigación, el enfoque de la Geografía de la Salud que aborda la relación entre movilidad y acceso a los servicios públicos de salud, es en la actualidad un tema de gran interés y creciente desarrollo. En este

sentido, una futura línea a seguir, sería el estudio de la red de viajes asociada a la organización del sistema público de salud en el acceso a atención hospitalaria, considerando el perfil epidemiológico de la población. Este tipo de estudios representa mayor complejidad, al vincular la movilidad con aspectos asociados a la salud y enfermedad de las poblaciones, pero que han demostrado ser útiles para la gestión y evaluación de políticas públicas sectoriales.

Finalmente, los estudios geográficos desde esta perspectiva espacial y cuantitativa como el aquí desarrollado, aplicados a la planificación y gestión territorial de los servicios sanitarios, ofrecen posibilidades notables para evaluar tanto la accesibilidad espacial a los equipamientos, como la distribución de la oferta actual de servicios hospitalarios, en las que se pueden reconocer desigualdades, detalladas en la identificación de las áreas razonablemente servidas y/o marginadas, y cuáles son los grupos socio-espaciales beneficiados o penalizados en accesibilidad (Fuenzalida, 2010). Esto de forma directa permite valorar en qué medida los objetivos de eficiencia y equidad espacial se logran en cada territorio o región.

CAPITULO 5: BIBLIOGRAFÍA

Andersen, R., Davidson, P. & Baumeister, S. (2007). Improving access to care in America. Changing the US health care system: key issues in health services policy and management, 3, 3-31.

Apparicio, P., Abdelmajid, M., Riva, M. & Shearmur, R. (2008). Comparing alternative approaches to measuring the geographical accessibility of urban health services: Distance types and aggregation-error issues. *International journal of health geographics*, 7(1), 7.

Bagheri, N., Holt, A. & Benwell, G. (2009). Using geographically weighted regression to validate approaches for modelling accessibility to primary health care. *Applied Spatial Analysis and Policy*, 2(3), 177-194.

Barcellos, C. & Buzai, G. D. (2006). La dimensión espacial de las desigualdades sociales en salud: aspectos de su evolución conceptual y metodológica. Departamento de Ciencias Sociales. Universidad Nacional de Luján: Anuario de la División Geografía, 275-92.

Ben-Akiva, M. & Lerman, S. (1979). Disaggregate travel and mobility choice models and measures of accessibility: an empirical analysis. *J of Transportation Statistics*, 4, 49-66.

Benach, J. & Amable, M. (2004). Las clases sociales y la pobreza. *Gaceta Sanitaria*, 18, 16-23.

Bocco, G., Mendoza, M. & Masera, O. (2000). La dinámica del cambio del uso del suelo en Michoacán. Una propuesta metodológica para el estudio de los procesos de deforestación. *Investigaciones Geográficas, Boletín del Instituto de Geografía, UNAM*, 44, 18-38.

Bosanac, E., Parkinson, R. & Hall, D. (1976). Geographic access to hospital care: a 30-minute travel time standard. *Medical Care*, *14*(7), 616-623.

Bosque Sendra, J. (1992). Sistemas de Información Geográfica. Madrid: Rialp.

Bosque Sendra, J. (2000). Hacia un sistema de ayuda a la decisión espacial para la localización de equipamientos. *Estudios Geográficos*, 61(241), 567-598.

Borrell, C. & Artazcoz, L. (2008). Las políticas para disminuir las desigualdades en salud. *Gaceta Sanitaria*, 22(5), 465-473.

Brabyn, L. & Skelly, C. (2001). Geographical Access to Services, Health (GASH): modelling population access to New Zealand public hospitals. In *Proceedings: Thirteenth Annual Colloquium of the Spatial Information Research Centre*, 2(5), 163-174.

Brabyn, L. & Skelly, C. (2002). Modeling population access to New Zealand public hospitals. *International Journal of Health Geographics*, 1(1), 3.

Buzai, G. D. (2003). *Mapas sociales urbanos* (1a. ed). Buenos Aires: Lugar Editorial.

Buzai, G. D. (2007). Análisis espacial cuantitativo de los diagnósticos de enfermedades en la ciudad de Luján. En G. D. Buzai, *Métodos Cuantitativos en Geografía de la Salud* (1a. ed). 241-264. Luján: Universidad Nacional de Luján.

Buzai, G. D. (2009). Sistemas de Información Geográfica en Geografía de la Salud. En G. D. Buzai, *Salud y enfermedad en Geografía*, 111-134. Buenos Aires: Lugar Editorial.

Buzai, G. D. (2011). Modelos de localización-asignación aplicados a servicios públicos urbanos: análisis espacial de Centros de Atención Primaria de Salud (CAPS) en la ciudad de Luján, Argentina. *Cuadernos de Geografía - Revista Colombiana de Geografía*, 20(2), 111-123.

Cardozo, O., Gutiérrez, J. & García, J. (2010). Influencia de la morfología urbana en la demanda de transporte público: análisis mediante SIG y modelos de regresión múltiple. *GeoFocus*, 10, 82-102.

Castel, R. (1997). Las metamorfosis de la cuestión social. Buenos Aires: Editorial Paidos.

Castro, R. (2007). Midiendo la eficiencia de los hospitales públicos en Chile. *En Foco*, 108.

Charlton, M. & Fotheringham, S. (2009). Geographically Weighted Regression, White Paper. *National Centre for Geocomputation. Maynooth, Co Kildare, Ireland*, 1-13.

Chateau, D., Metge, C., Prior, H. & Soodeen, R. (2012). Learning From the Census: The Socio-economic Factor Index (SEFI) and Health Outcomes in Manitoba. *C J Public Health*, 8, 23-27.

Collazos, R., Gamboa, P., Prado, V. & Verardi, V. (2006). Análisis espacial del precio de oferta de la vivienda en el área metropolitana de Cochabamba. *Revista Latinoamericana de Desarrollo Económico*, 6, 33-62.

Comber, A., Brunsdon, C. & Radburn, R. (2011). A spatial analysis of variations in health access: linking geography, socio-economic status and access perceptions. *International Journal of Health Geographics*, 10(1), 44.

Conserjería de Salud. (2004). Libro Blanco de la Atención Especializada en Andalucía. Desarrollo de los Centros Hospitalarios de Alta Resolución. Junta de Andalucía, Sevilla, 52 (inédito).

Cornago, C. & Orcao, A. (2003). Accesibilidad geográfica de la población rural a los servicios básicos de salud: estudio en la provincia de Teruel. *Revista de estudios sobre despoblación y desarrollo rural*, 3, 111-150.

Crijnen, A., Bengi, L. & Verhulst, F. (2002). Teacher-reported problem behaviour in Turkish immigrant and Dutch children: a cross cultural comparison. *Acta Psychiatrica Scandinavica*, 102, 439-44.

Curtis, L. & Macminn, W. (2007). Health-Care Utilization in Canada: 25 Years of Evidence. SEDAP Program, McMaster University, Ontario.

Davey Smith, G., Hart, C. & Watt, G. (1998). Individual social class, area-based deprivation, cardiovascular diseases risk factors, and mortality: the Renfrew and Paisley study. *J Epidemiol Community Health*, 52, 399-405.

DEIS. (2013). *Indicadores básicos de salud en Chile 2013*. Departamento de Estadísticas e Información de Salud, Ministerio de Salud, Chile.

Diez-Roux, A., Nieto, F., Muntaner, C., Tyroler, H., Comstock, G., Shahar, E. & Szklo, M. (1997). Neighborhood environments and coronary heart disease: a multilevel analysis. *American journal of epidemiology*, 146(1), 48-63.

Domanski, R. (1979). Accessibility, efficiency and spatial organization. *Environment and Planning*, 11, 1189-1206.

Duque, J. C., Velásquez, H. & Agudelo, J. (2011). Infraestructura pública y precios de vivienda: una aplicación de regresión geográficamente ponderada en el contexto de precios hedónicos. *Ecos de Economía*, 15(33), 95-122.

Fotheringham, A. S. & Charlton, M. (1998). Geographically weighted regression: A natural evolution of the expansion method for spatial data analysis. *Environment and Planning A*, 30, 1905–1927.

Fotheringham, A. S., Brunsdon, C. & Charlton, M. (2002). *Geographically weighted regression: The analysis of spatially varying relationships*. Chichester: Wiley.

Frenz, P. (2012). Desafíos en salud pública de la Reforma. equidad y determinantes sociales de la salud. *Revista chilena de salud pública*, *9*(2), 103.

Fuenzalida, M. (2010). Análisis de desigualdades territoriales en la oferta de equipamientos públicos: el caso de los hospitales en la red asistencial del sistema público de salud en Chile. *Geografía y Sistemas de Información Geográfica (GEOSIG, Luján)*. 2(2), 111-125.

Fuenzalida, M. & Moreno, A. (2010): Diseño con SIG de la localización óptima de centros de atención primaria de salud, discriminando según estatus socioeconómico. En R. Díaz-Delgado, L. Pesquer, E. Prat, J. Bustamante, J. Masó & J. Pons, *Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos.* 453-465. Sevilla: Universidad de Sevilla.

Galobardes, B., Shaw, M., Lawlor, D., Lynch, J. & Davey Smith, G. (2006). Indicators of socioeconomic position (part 1). *J Epidemiol Community Health*, 60, 7-12

García, J. (2000). SIG y Accesibilidad: Efectos de las nuevas autopistas orbitales de Madrid. *Tecnologías Geográficas para el Desarrollo Sostenible*, 623-639.

Garrocho, C. (1998). Los Sistemas de Información Geográfica en la Geografía Médica. *Economía, Sociedad y Territorio*, 1(3), 597-618.

Garrocho, C. (2007). Métodos cuantitativos en geografía de la salud: los modelos de localización espacial. En G. D. Buzai, *Métodos Cuantitativos en Geografía de la Salud* (1a. ed). 41-47. Luján: Universidad Nacional de Luján.

Geyer, S., Hemstrom, O., Peter, R. & Vagero, D. (2006). Education, income, and occupational class cannot be used interchangeably in social epidemiology.

Empirical evidence against a common practice. *J Epidemiol Community Health*, 60, 804-810.

Graham, H. (2004). Social determinants and their unequal distribution: clarifying policy understandings. *Milbank Quarterly*, 82(1), 101-124.

Goldstein, G., Novick, R. & Schaeffer, M. (1990). Housing, health and well-being: an international perspective. J. Soc. & Soc. Welfare, 17, 161.

Gómez, J. & Luján, F. (1990). Estudio de la red de carreteras en la Región de Murcia a través de sus dimensiones básicas. *Papeles de Geografía*, 16, 125-142.

Gutiérrez, A. (2008). Geografía, transporte y movilidad. *Revista Espacios*, 100-107.

Gutiérrez, A. (2009). La movilidad de la metrópolis desigual: el viaje a la salud pública y gratuita en la periferia de Buenos Aires. *CONICET/UBA, Instituto de Geografía, Programa Transporte y Territorio.*

Gutiérrez, A. (2014). Revisando el papel del transporte y la movilidad en la gestión de políticas públicas sectoriales: el caso de la salud). *Transporte y Territorio*, 10, 1852-7175.

Gutiérrez, A. & Minuto, D. (2006). Una aproximación metodológica al estudio de lugares con movilidad vulnerable. *Revista do Laboratório de Cartografia e Estudos Ambientais*, 1(2), 9-26.

Gutiérrez, J. (1994). Accesibilidad a los Centros de Actividad Económica en España. *Revista de Obras Públicas*, 3331, 39-42.

Gutiérrez, J., Condeço-Melhorado, A. & Martín, J. (2009). Using accessibility indicators and GIS to assess spatial spillovers of transport infrastructure investment. *Journal of Transport Geography*, 18(1), 141-152.

Gutiérrez, J. & García Palomares, J. C. (2002). Accesibilidad peatonal a la red sanitaria de asistencia primaria en Madrid. *Anales de geografía de la Universidad Complutense*, 1, 269-280.

Gutiérrez, J., García Palomares, J. C. & Cardozo, O. (2012). Regresión Geográficamente Ponderada (GWR) y estimación de la demanda de las

estaciones del Metro de Madrid. En XV Congreso Nacional de Tecnologías de la Información Geográfica. Madrid.

Gutiérrez, J. & Monzón, A. (1993). Accesibilidad a los Centros de Actividad Económica antes y después del Plan Director de Infraestructuras. *Ciudad y Territorio*, 1 (97), 385-395.

Hadayeghi, A., Shalaby, A. & Persaud, B. (2010). Development of planning level transportation safety tools using geographically weighted poisson regression. *Accident Analysis and Prevention*, 42, 676-688.

Hansen, G. (1959). How accessibility shapes land use. *Journal of the American Institute of Planners*, 25, 73-76.

Hare, T. & Barcus, H. (2007). Geographical accessibility and Kentucky's heart-related hospital services. *Applied Geography*, 27(3), 181-205.

Higueras, A. (2003). *Teoría y Método de la Geografía. Introducción al Análisis geográfico regional* (1ª ed). 99, 447. España: Prensas Universitarias de Zaragoza.

Howe, G. M. (1986). Does it matter where I live?. *Transactions of the Institute of British Geographers*, 11(4), 387-414.

Hurvich, C., Simonoff, S. & Tsai, C. (1998). Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. *Journal of the Royal Statistical Society*, 60(2), 271-293.

Íñiguez, L. & Barcellos, C. (2003). Geografía y Salud en América Latina: Evolución y Tendencias. *Revista Cubana de Salud Pública*, 29(4), 330-343.

Jirón, P. & Mansilla, P. (2013). Atravesando la espesura de la ciudad: vida cotidiana y barreras de accesibilidad de los habitantes de la periferia urbana de Santiago de Chile. *Revista de Geografía Norte Grande*, 56, 53-74.

Koenig, J. (1980). Indicators of urban accessibility: theory and application. *Transportation*, 9,145-172.

Kuby, M., Barranda, A. & Upchurch, C. (2004). Factors influencing light-rail station boardings in the United States. *Transportation Research*, 38(3), 223-247.

Lahelma, E., Martikainen, P., Laaksonen, M. & Aittomaki, A. (2004). Pathways between socioeconomic determinants of health. *J Epidemiol Community Health*, 58, 327–332.

Lloyd, C. D. & Shuttleworth, I. (2005). Analysing commuting using local regression techniques: scale, sensitivity, and geographical patterning. *Environment and Planning A*, 37(1), 81-103.

López, E. (2007). Assessment of transport infraestructura plans: a strategic approach integrating efficiency, cohesion and environmental aspects. Tesis Doctoral, Universidad Politécnica de Madrid, 69-179.

Loyola, C. & Albornoz, E. (2009). Flujo, movilidad y niveles de accesibilidad en el centro de Chillán, año 2007: Propuesta de mejoramiento mediante SIG. *Urbano*, 12(19), 17-27.

Luo, W. & Wang, F. (2003). Measures of spatial accessibility to health care in a GIS environment: synthesis and a case study in the Chicago region. *Environment and Planning B: Planning and Design*, 30, 865-884.

Mackenbach, J., Stronks, K. & Kunst, A. (1989). The contribution of medical care to inequalities in health. *Social Science & Medicine*, 29, 369–376.

Marmot, M. (2007). Commission on Social Determinants of Health. Achieving health equity: from root causes to fair outcomes. *Lancet*, 370, 1153-1163.

Martínez, M. S., Garmendia, M. (2008). Inequidades en la utilización de servicios de hospitalización en personas mayores en Chile. *En Foco*, 128.

MINSAL. (2010). Estrategia Nacional de Salud para el cumplimiento de los objetivos sanitarios de la década 2011-2020. Ministerio de Salud, Chile.

Monzón, A. & Orellana, H. (1996). La accesibilidad como instrumento de evaluación de las infraestructuras de transporte. Análisis de las actuaciones del P.D.I. *Estudios de Transporte y Comunicaciones*, 73, 35-52.

Morris, J., Dumble, M. & Wigan, M. (1979). Accessibility indicators for transport planning. *Transportation Research Part A: General*, 13, 91-109.

MOP. (2010). *Manual de Carreteras del Ministerio de Obras Públicas*. Seguridad Vial, 6. Ministerio de Obras Públicas, Chile.

Mountain, D., Tsui, J. & Raper, J. (2007). Modelling accessibility via transportation networks based upon previous experience: a Geographically Weighted Regression approach. *Paper presented at the Geocomputation 2007, Maynooth, Ireland.*

Munoz, U. & Kallestal, C. (2012). Geographical accessibility and spatial coverage modeling of the primary health care network in the Western Province of Rwanda. *International Journal of Health Geographics*, 11, 40.

Naess, O., Claussen, B., Thelle, D. & Davey Smith, G. (2005). Four indicators of socioeconomic position: relative ranking across causes of death. *Scand J Public Health*, 33, 215-221.

OMS. (1998). *Promoción de la salud (Glosario)*. Organización Mundial de la Salud. Centro Colaborador de Promoción de la Salud, Departamento de Salud Pública y Medicina comunitaria, Universidad de Sydney, Australia.

Paez, A., Mercado, R., Farber, S., Morency, C. & Roorda, M. (2010). Accessibility to health care facilities in Montreal Island: an application of relative accessibility indicators from the perspective of senior and non-senior residents. *International journal of health geographics*, 9(1), 1-15.

Peters, D. (2003). Cohesion, policentricity, missing links and bottlenecks: conflicting spatial storylines for Pan-European transport investments. *European Planning Studies*, 11(3), 317-339.

Ramírez, M. & Bosque Sendra, J. (2001). Localización de hospitales: analogías y diferencias del uso del modelo P-mediano en Sig raster y vectorial. *Anales de Geografía de la Universidad complutense*, 21, 53.

Ramírez, M. (2003). Cálculo de medidas de accesibilidad geográfica, temporal y económica generadas mediante sistemas de información geográfica. *En I Congreso de la Ciencia Cartográfica y VIII Semana Nacional de Cartográfia*. Buenos Aires.

Rodríguez, V. (2010). Medición de la accesibilidad geográfica de la población a la red de hospitales de alta resolución de Andalucía mediante sistemas de información geográfica. En R. Díaz-Delgado, L. Pesquer, E. Prat, J. Bustamante, J. Masó & J. Pons, *Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos*. 549-564. Sevilla: Universidad de Sevilla.

Rognerud, M. & Zahl, P. (2006). Social inequalities in mortality: changes in the relative importance of income, education and household size over a 27-year period. *Eur J Public Health*, 16, 62-68.

Rojas, C., Plata, W., Valdebenito, P., Muñiz, I. & De la Fuente, H. (2013). La Dinámica de expansión urbana del Área Metropolitana de Concepción. En J. Williams, R. Hidalgo, P. Brand & L. Pérez, *Metropolizaciones Colombia -Chile: Experiencias de Bogotá, Medellín, Santiago y Concepción.* 39-56. Universidad Nacional de Colombia: Línea Editorial 1 Investigaciones.

Sasaki, S., Comber, A., Suzuki, H. & Brunsdon, C. (2010). Using genetic algorithms to optimise current and future health planning-the example of ambulance locations. *International Journal of Health Geographics*, 9, 4.

Schuurman, N., Fiedler, R., Grzybowski, S. & Grund, D. (2006). Defining rational hospital catchments for non-urban areas based on travel-time. *International Journal of Health Geographics*, 5, 43.

Solar, O. & Irwin, A. (2007). A conceptual framework for action on the social determinants of health. Comission on Social Determinantes of Health, Ginebra.

Soto, E. (2013). Regresión Ponderada Geográficamente para el estudio de la temperatura superficial en Medellín, Colombia. *Revista AIDIS*, 6(3), 42-53.

Tarlov, A. (1996). Social determinants of health: The sociobiological translation. *Health and social organization*, 79-93.

Ten Have, M. & Bijl, R. (2002). Inequalities in mental health care and social services utilisation by immigrant women. *The European Journal of Public Health*, 9, 45-51.

Thomopoulos, N., Grant-Muller, S. & Tight, M. (2009). Incorporating equity considerations in transport infrastructure evaluation: Current practice and a proposed methodology. *Evaluation and Program Planning*, 32, 351-.59.

Tunstall, H., Mitchell, R., Gibbs, J., Platt, S. & Dorling, D. (2007). Is economic adversity always a killer? Disadvantaged areas with relatively low mortality rates. *J Epidemiol Community Health*, 61, 337-343.

Tunstall, H., Shaw, M. & Dorling, D. (2004). Places and Health. *J Epidemiol Community Health*, 58, 6-10.

Villanueba, A. (2010). Accesibilidad geográfica a los sistemas de salud y educación. Análisis espacial de las localidades de Necochea y Quequén. *Revista Transporte y Territorio*, 2, 136-157.

Walters, G. & Cervero, R. (2003). Forecasting transit demand in a fast growing corridor: the direct-ridership model approach. *Fehrs and Peers Associates*.

Whitehead, M. (1992). The concepts and principles of equity and health. *Int J Health Serv*, 22, 429-445.

CAPITULO 6: ANEXOS

En el presente capítulo se incluye el artículo desarrollado en el marco de este proyecto de tesis denominado "Evaluación de la accesibilidad espacial a la red hospitalaria pública en el Área Metropolitana de Concepción", publicado en la revista Geografía y Sistemas de Información Geográfica (GESIG), en enero de 2015, y que presenta algunas contribuciones en el uso de diferentes indicadores de accesibilidad para la determinación desigualdades espaciales en la oferta actual de servicios hospitalarios en el área de estudio.

Martínez Bascuñán, M.; Rojas Quezada, C. (2014). Evaluación de la accesibilidad espacial a la red hospitalaria en el área metropolitana de Concepción. *Geografía y Sistemas de Información Geográfica*. (GESIG-UNLU, Luján). Año 6, N° 6, Sección I: 176-200.On-line: www.gesigproeg.com.ar.

Geografía y Sistemas de Información Geográfica (GEOSIG). Revista digital del Grupo de Estudios sobre Geografía y Análisis Espacial con Sistemas de Información Geográfica (GESIG). Programa de Docencia e Investigación en Sistemas de Información Geográfica (PRODISIG). Universidad Nacional de Luján, Argentina. http://www.gesig-proeg.com.ar (ISSN 1852-8031)

Luján, Año 6, Número 6, 2014, Sección I: Artículos. pp. 176-200.

EVALUACIÓN DE LA ACCESIBILIDAD ESPACIAL A LA RED HOSPITALARIA EN EL ÁREA METROPOLITANA DE CONCEPCIÓN

Marcela Martínez Bascuñán¹² - Carolina Rojas Quezada²³

¹Magíster en Análisis Geográfico,

²Departamento de Geografía, Universidad de Concepción

³Centro de Desarrollo Urbano Sustentable CEDEUS

mamartinezb@udec.cl; crojasq@udec.cl

RESUMEN

El artículo evalúa la accesibilidad a la red hospitalaria pública del Área Metropolitana de Concepción (AMC), Chile, con la finalidad de analizar los desequilibrios territoriales que se generan en el acceso por las redes de transporte a los equipamientos sanitarios. La metodología propone el uso de dos indicadores de accesibilidad espacial, y la aplicación de Sistemas de Información Geográfica para el análisis de redes. Los resultados indican que los niveles de accesibilidad varían según el indicador utilizado, sin embargo en ambos escenarios se observó que las zonas más desfavorecidas están compuestas por las localidades rurales de Hualqui y Santa Juana, las que presentan tiempos de desplazamiento mayores a cien minutos para acceder al equipamiento hospitalario. La obtención de los índices estadísticos, indicó niveles de accesibilidad menos dispares en la utilización de un indicador gravitatorio.

Palabras clave: Accesibilidad, Equidad Territorial, Indicadores Espaciales, Equipamiento Hospitalario.

ABSTRACT

This article shows the accessibility evaluation to the public hospital network of the Concepción Metropolitan Area (CMA) in Chile. The aim is to analyze the spatial disequilibrium in accessibility to health facilities generated by the transport network. The method proposes the application of GIS for network analysis and the use of two spatial indicators of accessibility. The main results indicate that the accessibility levels vary depending on the indicator being used. Nevertheless, independent of the indicator, the most disadvantaged areas were the rural towns of Hualqui and Santa Juana, which have travel times greater than one hundred minutes to access to health facilities. Finally, statistical figures show that the gravity indicator provides the less uneven results regarding accessibility.

Key words: Accessibility, Spatial Equity, Spatial Indicators, Health Facilities

Introducción

Los estudios geográficos desde un enfoque espacial y automatizado, en general aplicados a la planificación, localización y gestión territorial de los servicios sanitarios, han ofrecido importantes posibilidades para evaluar la distribución espacial de la oferta de los equipamientos hospitalarios, pudiéndose identificar áreas razonablemente servidas y/o marginadas, y cuáles son los grupos socio-espaciales beneficiados y/o desfavorecidos en cuanto a su accesibilidad (Fuenzalida, 2010). Entonces, el objetivo ha sido evaluar como se garantiza un acceso equitativo de la población a las prestaciones, tanto de atención primaria como especializada en un sistema de salud, cuya expresión espacial implica al mismo tiempo una distribución geográfica equitativa de los centros que prestan servicios de salud a la población.

La distribución espacial de los centros asistenciales, dependerá de la relación del servicio que ofrecen (en función de su complejidad y especialización) y su localización (Rodríguez, 2010), mientras que la accesibilidad, de la población que se desplaza y la localización de la red sanitaria (Gutierrez & Garcia Palomares, 2002). En este sentido es relevante cumplir con el principio de equidad espacial, el cual hace referencia a la justicia en la distribución geográfica de un equipamiento, relacionándose directamente con el concepto de igualdad, que es la medida que mejor valora las distribuciones. De esta forma, la equidad espacial depende de la facilidad de acceso y de la variabilidad de las distancias, tiempos y costos económicos que separan a cada individuo a los servicios o equipamientos más próximos (Ramírez, 2003; Bosque Sendra, 1992).

El cuestinamiento sobre la localización de equipamientos en el análisis de equidad y accesibilidad espacial a la salud ha sido una de las preguntas frecuentes en geografía, ultimamente han sido numerosas las contribuciones desde la geografía automatizada, los Sistemas de Información Geográfica (SIG) y los Sistemas de Ayuda a la Decisión Espacial (SADE), estos pueden brindar una gran cantidad de alternativas para su tratamiento. En este contexto, los SIG se destacan como potentes herramientas de apoyo en el análisis espacial, vigilancia, planeamiento y evaluación de intervenciones en el sector salud, haciéndose evidente el papel impulsor de los mapas y las nuevas herramientas de geoprocesamiento, que se integran a las prioridades de investigación y acción (Íñiguez & Barcellos, 2003).

Los SIG especificamente permiten desarrollar aplicaciones de análisis cuantitativos relacionados con la Geografía de la Salud, tanto en los estudios de Geografía Médica como la Geografía de los Servicios. Esta última línea ha sido aplicada al análisis geográfico de la cobertura de equipamientos de salud, accesibilidad, rutas óptimas, áreas de influencia, evaluación multicriterio y análisis de localización-asignación (Barcellos & Buzai, 2006), destacandose los estudios de análisis de redes de Gutiérrez & Monzón (1993); Gutiérrez (1994); y Gutiérrez *et al.* (1998), donde se analizan los efectos de las actuaciones previstas en un plan de infraestructuras sobre la accesibilidad territorial, considerando diversos modos de transporte, además de la medición específica de la accesibilidad peatonal a la red sanitaria desarrollada en Gutierrez & García Palomares (2002); por otra parte los estudios de accesibilidad y localización de hospitales públicos, desarrollados por Ramírez & Bosque Sendra (2001); y Ramírez (2003), que evalúan tanto la equidad espacial en el acceso, como la eficiencia en la distribución del equipamiento hospitalario.

De esta manera, el objetivo de este artículo es evaluar la accesibilidad espacial de la red hospitalaria de salud pública de las localidades urbanas y rurales que conforman el Área Metropolitana de Concepción (AMC) por la red de transporte por carreteras, con la finalidad de analizar los desequilibrios territoriales que se generan en la dinámica del territorio y contribuir en la planificación inclusiva de los equipamientos asistenciales.

En el AMC existen 228 localidades urbanas y rurales distribuidas en las distintas comunas que la componen, con altas densidades de población en algunas localidades desprovistas de hospitales y centros de atención primaria. Muchas de estas localidades presentan al mismo tiempo una infraestructura vial deficiente, que impide la adecuada conectividad a las áreas urbanas, donde se localizan dichos equipamientos de salud.

ACCESIBILIDAD DESDE EL ENFOQUE DE LA GEOGRAFÍA DE LA SALUD

La evaluación de la accesibilidad, constituye una importante línea de investigación de la Geografía de la Salud, que ha sido recientemente explorada con el auge de las tecnologías de la información geográfica y la creciente preocupación por lograr equidad en el acceso a equipamientos públicos sanitarios.

El acceso a los servicios de salud implica considerar tanto su existencia como equipamiento, así como el hecho de que éstos resulten geográfica y económicamente alcanzables, de esta forma el transporte público tiene una influencia central en el acceso a las unidades de prestaciones sanitarias, siendo sus deficiencias un obstáculo a superar (Villanueva, 2010). Desde la perspectiva de la geografía, se han venido desarrollando índices de accesibilidad que permiten evaluar las condiciones existentes y futuras de eficiencia y/o equidad. La eficiencia se valora de tal forma que la distribución de la oferta (los recursos) permita alcanzar el máximo de accesibilidad espacial (Fuenzalida, 2010).

De esta forma, es importante la reflexión de la incidencia de la accesibilidad desde la perspectiva del transporte en los desequilibrios territoriales de determinados núcleos, principalmente asociada a los aspectos relevantes como la salud pública. Para este propósito, los modelos de accesibilidad, entendidos como los medios de superación de la distancia, se presentan como un importante instrumento para la determinación de las desigualdades existentes en el territorio, y buscar alternativas que las solucionen.

En el contexto geográfico, la accesibilidad se entiende como la oportunidad relativa de interacción y contacto, y en el análisis regional la accesibilidad se refiere a la mayor o menor facilidad con que en un momento dado es posible alcanzar un lugar desde otro (Higueras, 2003). Sin embargo, como indican Monzón & Orellana (1996), cada autor suele proponer una definición de accesibilidad a su medida, en función de los objetivos de su trabajo y de los índices definidos para su análisis. Los múltiples enfoques utilizados para definir el concepto de accesibilidad han generado un aumento en las diferentes formulaciones para su medición, por ejemplo, en la utilización de diferentes indicadores de accesibilidad según su complejidad. Un ejemplo de esto son los indicadores de accesibilidad absoluta (locacional) y relativa (gravitatorio), aplicados recientemente a estudios de evaluación de infraestructuras de transporte.

El indicador de accesibilidad absoluta es sensible a la localización geográfica de los núcleos de población (Gutiérrez *et al.*, 1993), y proporciona información relevante sobre costes potenciales de transporte asociados a cada nodo en su relación con los demás, teniendo siempre en cuenta la importancia económica de los nodos. Se trata de calcular el promedio de las impedancias que separan a cada nodo con respecto a los diferentes centros

de actividad económica a través de la red (por el camino de mínima impedancia), considerando la renta de estos como factor de ponderación (Loyola & Albornoz, 2009).

El indicador de accesibilidad relativa, en cambio, neutraliza el efecto de la localización geográfica, con el objetivo de resaltar más los efectos de la oferta infraestructural sobre la accesibilidad. Refleja al mismo tiempo los índices de rodeo (estructura geométrica de la red) y el tipo de infraestructura en la accesibilidad a los principales centros de actividad (Gutiérrez *et al.*, 1993).

Como se ha señalado, existe una gran variedad de indicadores de accesibilidad, con formulaciones muy diversas, sin embargo, todos ellos permiten evaluar la calidad de las comunicaciones entre diversos puntos situados en la misma zona de estudio. Los múltiples enfoques utilizados para definir el concepto de accesibilidad han generado un aumento en las diferentes formulaciones para su medición, por ejemplo, en la utilización de diferentes indicadores de accesibilidad según su complejidad. La accesibilidad, por lo tanto, es una medida que presenta múltiples formas de obtención según los objetivos que se quieran alcanzar, y constituye un elemento clave para potenciar las regiones menos favorecidas en el acceso a diferentes niveles de servicios.

COHESIÓN TERRITORIAL Y DESEQUILIBRIOS EN LOS NIVELES DE ACCESIBILIDAD

El concepto de cohesión territorial se entiende comúnmente como la igualdad de acceso a servicios y a otros aspectos fundamentales de la vida humana (Thomopoulos *et al.*, 2009). La mayoría de los enfoques existentes para la medición de la cohesión, provienen de la literatura económica, donde la cohesión se define como el proceso de convergencia en los niveles de bienestar regional, a fin de lograr el progreso y la sostenibilidad (Peters, 2003). El concepto de cohesión está, por lo tanto, estrechamente relacionado con la definición de un conjunto de ideas referidas a la equidad y la justicia.

La metodología para evaluar la cohesión territorial consiste en el análisis de los cambios en la distribución territorial de los niveles de accesibilidad, mediante el cálculo de medidas de dispersión tal como se viene proponiendo en investigaciones recientes (Martín et al., 2004; Gutiérrez et al., 2006; López, 2007), siendo aplicados comúnmente en la evaluación de planes de inversión de infraestructuras de transporte. Existe una gran variedad de índices estadísticos capaces de caracterizar los niveles de dispersión de una variable dada, referidos a los índices de inequidad (López, 2007). La elección de los índices de inequidad puede presentar una fuerte influencia sobre los resultados. Los cuatro índices de inequidad comúnmente utilizados en la mayoría de los estudios sobre cohesión

regional corresponden a: coeficiente de variación, coeficiente de Gini, índice de Atkinson e índice de Theil.

MATERIALES Y MÉTODOS

Área de Estudio

El AMC está conformada por once comunas, que corresponden a Concepción, Tomé, Penco, Talcahuano, Hualpén, San Pedro de la Paz, Chiguayante, Santa Juana, Hualqui, Coronel y Lota, las que representan el 9% del total de población regional (INE, 2002). Esta zona alberga 902.712 habitantes en las áreas urbanas, cifra que corresponde a más de la mitad de la población total de la Región del Biobío.

La población reside principalmente en zonas urbanas (97%), caracterizadas por ciudades emplazadas sobre las planicies a las riberas del río Biobío. Los centros de Concepción y Talcahuano destacan como los principales articuladores urbanos de este espacio eminentemente industrial, como lo demuestra la distribución de la población económicamente activa (277.327 habitantes). Su población se dedica principalmente al comercio (19,24%), industria (14,7%), actividades inmobiliarias y empresariales (8,8%), construcción (8,1%) y enseñanza o educación (7,9%) (Rojas *et al.*, 2009).

Figura 1: Localidades del AMC y distribución de hospitales

Fuente: Elaboración propia

Las once cabeceras comunales que conforman el área de estudio están compuestas por un total de 228 centros poblados urbanos y rurales, las cuales corresponden a

localidades y aldeas según el tamaño de sus habitantes (Figura 1). Estas localidades y aldeas son consideradas para evaluar la accesibilidad a la red de hospitales públicos. La red hospitalaria de salud pública del AMC, está conformada por 9 establecimientos pertenecientes a los servicios de salud de Concepción y Talcahuano (Tabla 1).

Tabla 1: Establecimientos pertenecientes a los Servicios de Salud de Concepción y Talcahuano

S.S. Concepción	S.S. Talcahuano
Hospital Regional G.G. Benavente	Hospital Las Higueras
Hospital Traumatológico de Concepción	Hospital Tomé
Hospital Coronel	Hospital Penco Lirquén
Hospital Lota	
Hospital Santa Juana	

Principales características demográficas y epidemiológicas de la población

Servicio de Salud Concepción (SSC)

El SSC atiende a una población de 638.646 habitantes, la que se concentra principalmente en las zonas urbanas, constituyendo el 95.6% del total del Servicio. Respecto a su estructura por edad, se caracteriza por ser una población en envejecimiento, fenómeno similar al observado a nivel país, con un Índice de dependencia (IDD) de 30,1% y edad media de 34,2 años.

Tabla 2: Distribución porcentual de la población por grupos etarios

Distribución	Ch	ile	SS Concepción		
Porcentual	2009	2012	2009	2012	
Total Población	16.928.873	17.402.630	638.646	660.778	
0-9	14.78	14.33	14.08	13.66	
10-19	16.8	15.61	17.55	16.26	
20-64	59.61	60.52	60.25	61.2	
65 y más	8.81	9.54	8.13	8.88	

Fuente: Estadísticas SS Concepción

De acuerdo al sexo, el 48,3% de la población son hombres y el 51,7% mujeres. En la Tabla 2 se observan los pesos porcentuales de los grupos de edad del SSC y su comparación con el país en los años 2009 y 2012. Se puede apreciar la disminución porcentual de los grupos de menores de 10 años y menores de 20 años, con aumento de los grupos mayores de 20 años y de 65 años y más.

La Figura 2, muestra la concentración poblacional de las comunas del Servicio Salud Concepción. La mayor concentración se encuentra en la comuna de Concepción (35,6 %), le siguen Chiguayante (18,0%), Coronel (16,8%), y San Pedro de la Paz (14,8 %). En relación a las características epidemiológicas, durante los últimos 25 años, las tasas de natalidad en Chile y Regiones han ido disminuyendo progresivamente. En el año 2009, las cifras oficiales muestran para el País y la Región descensos, con tasas de 15,0 por mil habitantes y 13,8 por mil habitantes respectivamente. En relación a la población que atiende el SSC, se observa una coincidencia en la disminución progresiva de la tasa del País y la Región.

40% ■ Porcentaje Poblacional Comunas Servicio Salud Concepción, año 2009. 35% Participación Porcentual 30% 25% 18% 20% 15% 15% 8% 10% 5% 0% Concepción Chiguayante Coronel San Pedro de la Lota Resto de las Comunas comunas

Figura 2: Porcentaje Poblacional de las comunas del SSC, año 2009

Fuente: Estadísticas SS Concepción, 2009.

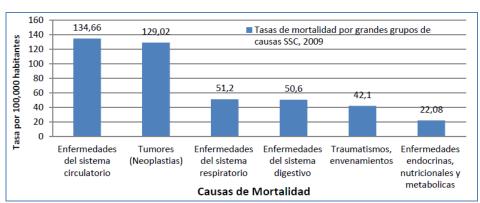


Figura 3: Tasas de mortalidad por grandes grupos causas SSC, 2009

Fuente: MINSAL, 2009

Según la Figura 3, en el SSC las causas de muerte según grandes grupos de causa fueron, en primer lugar, las Enfermedades del Sistema Circulatorio, seguidas por los Tumores; en tercer lugar las Enfermedades del Sistema Respiratorio; en cuarto lugar las Enfermedades del Sistema Digestivo y en quinto lugar los Traumatismos, Envenenamientos y algunas otras consecuencias de causas externas.

Servicio de Salud Talcahuano (SST)

El SST abarca las comunas de Talcahuano, Hualpén, Penco y Tomé, con una población total al año 2012 de 368.290 habitantes, de la cual el 49.2% corresponde a población masculina y un 50.8% a población femenina. Esta población es predominantemente urbana (97.5%), mientras que la población rural se ubica principalmente en la comuna de Tomé, alcanzando aproximadamente el 14% de la población total de esa comuna. Esta población presenta una distribución etaria, en general, similar al del resto del país. Sin embargo, pese a que el porcentaje de mayores de 65 años es de 9,7%, un punto mayor que el nacional, el 8.8% presenta un envejecimiento mayor especialmente en la comuna de Hualpén, que llega a 11,3%.

Respecto a los indicadores de situación de salud en la jurisdicción del Servicio, la Esperanza da Vida al Nacer al año 2006 en Hualpén es de 69,7 años, menor al promedio nacional (75,5 años), mientras que Talcahuano presenta una esperanza de vida de 76,9 años, marcadamente superior al promedio nacional (Tabla 3).

Tabla 3: Esperanza de Vida al Nacer SST, 2006

Comuna	Esperanza de vida	Esperanza de vida	Esperanza de vida
Comuna	al nacer total	al nacer hombres	al nacer mujeres
Tomé	75,49	72,14	78,97
Penco	75,26	71,59	79,07
Talcahuano	76,94	73,51	80,50
Hualpén	69,71	66,17	73,40
País	75,52	72,89	78,25

Fuente: DEIS - INE/CELADE - SEREMI VIII

En relación a las cifras de pobreza de la población que atiende el SST, se presenta una proporción significativamente mayor de pobreza (15,7%) e indigencia (5,6%) respecto a los valores promedio del país (10,5% y 3,2% respectivamente), siendo la comuna de Tomé la que posee las cifras más elevadas en ambos indicadores. A ello se agregan

porcentajes con mujeres jefas de hogar en las comunas de Penco, Hualpén y Tomé, con valores superiores al promedio nacional.

Respecto de los datos de Mortalidad y Morbilidad, es posible destacar que las causas específicas de muerte en ambos sexos al año 2008 son iguales que en el SSC. En los últimos 15 años la Mortalidad General ha declinado sistemáticamente, siendo en el período 1990-2005 el descenso a nivel nacional de 11.6%, y en el Servicio de Salud Talcahuano en menor grado con 8.6 %.

METODOLOGÍA

El uso de los Sistemas de Información Geográfica (SIG) facilita la integración y análisis de distintas dimensiones de realidad urbana (estadísticas demográficas y resultados espacializados de encuestas de movilidad, características del viario, cálculo de distancias a través de la red de calles, cálculo de rutas óptimas, etc.).

En la presente investigación, se utilizan las funcionalidades de análisis de redes de los SIG para el cálculo de los índices de accesibilidad locacional y de eficiencia de la red. En primer lugar se presentan los indicadores, y posteriormente se muestra la metodología utilizada en el cálculo de dichos índices utilizando la extensión de ArcGIS 10.1 *Network Analyst*.

SELECCIÓN DE LOS INDICADORES DE ACCESIBILIDAD

• Indicador de Localización

Este indicador es sensible a la localización geográfica de los núcleos de población, primando en las regiones centrales, lo que resulta fundamental desde el punto de vista del desarrollo regional, en el cual la base territorial no puede obviarse (Gutiérrez *et al.*, 1993). Se consideró para este trabajo el indicador propuesto por Rodríguez (2010), que mide la accesibilidad geográfica de la población a la red de hospitales de Andalucía, en unidad de tiempo de desplazamiento, representando el promedio de las impedancias (restricciones) que separan cada localidad con respecto a los diferentes recintos hospitalarios a través de la red, considerando el número de habitantes de cada localidad de origen como factor de ponderación. Su formulación es la siguiente:

$$L_i = \frac{\sum_{j=1}^{n} I_{ij} \cdot P_i}{\sum_{j=1}^{n} P_i}$$

Donde L_i es la accesibilidad locacional del nodo i; I_{ij} es la impedancia, definida como el tiempo de viaje por la ruta mínima a través de la red entre el nodo de origen i y el nodo de destino j; y P_i es la población en el origen i.

La valoración de accesibilidad geográfica locacional se realiza mediante la identificación de estándares que toman como nivel base el criterio de accesibilidad marcado en la planificación sectorial. Es decir, tomando como tiempo de acceso límite los 30 minutos al hospital de referencia (Consejería de Salud, 2004). De esta forma se consideran intervalos o categorías de accesibilidad según los siguientes criterios (Rodríguez Díaz, 2010):

- Crona municipal menor o igual a 15 minutos: accesibilidad óptima.
- Crona municipal entre 15 y 30 minutos: accesibilidad favorable.
- Crona municipal entre 30 y 45 minutos: accesibilidad desfavorable.
- Crona municipal mayor de 45 minutos: accesibilidad muy desfavorable.

• Indicador de Eficiencia

El indicador gravitatorio mide la accesibilidad en términos de eficiencia de la red en las conexiones de cada nodo con los distintos destinos (Hospitales), adoptando un enfoque gravitatorio en la ponderación de las distintas relaciones. Para neutralizar el efecto de la localización geográfica de los nodos, y resaltar el efecto de la infraestructura, la noción habitual de distancia (longitud, tiempo, coste) se sustituye por otra que expresa la facilidad de acceso en términos relativos. El indicador de eficiencia de la red relaciona los tiempos de acceso reales con los ideales para conseguir ese efecto (Gutiérrez *et al.*, 1998). Este indicador se expresa de la siguiente manera:

$$A_i = \sum_{j=1}^{n} \frac{R_{ij}}{I_{ij}} w_{ij}$$

$$w_{ij} = \frac{\frac{M_j}{R_{ij}}}{\sum_{j=1}^{n} \frac{M_j}{R_{ij}}}$$

donde,

 A_i es el indicador gravitatorio de eficiencia de la red; R_{ij}/I_{ij} es el ratio entre la impedancia real e ideal, definida como el tiempo de viaje en línea recta entre el nodo de origen i y el nodo de destino j; y W_{ij} es el peso relativo del destino j para el origen i. La relación M_i/R_{ij} representa el ratio entre la población de las localidades y el tiempo real de viaje.

Si bien este indicador no ha sido aplicado en la evaluación de accesibilidad a equipamientos sanitarios, resulta interesante de analizar desde el punto de vista de las características de la infraestructura de transporte existente para el desplazamiento, poniendo énfasis en la eficiencia de la red (en qué medida las impedancias reales se acercan a las ideales), más que en la localización geográfica de las localidades de origen.

Índices de dispersión de los valores de accesibilidad

Es fundamental evaluar si las disparidades en la accesibilidad se incrementan o disminuyen con los indicadores utilizados, reduciendo o incrementando la cohesión respectivamente. Esto se traduce en la necesidad de evaluar la equidad territorial de la accesibilidad, mediante la aplicación metodológica de medidas de dispersión para el análisis de la distribución de sus valores, a través de una selección de índices estadísticos capaces de caracterizar los niveles de dispersión de una variable dada.

Existe una variedad de índices estadísticos utilizados para este propósito. A continuación se presentan tres de los índices de dispersión frecuentemente utilizados en los análisis de las disparidades en accesibilidad.

• Coeficiente de variación

El Coeficiente de Variación permite comparar el grado de dispersión que presenta una variable, en este caso, se utilizan las medidas de accesibilidad según los indicadores de localización y eficiencia de la red. Su fórmula expresa la desviación estándar como porcentaje de la media aritmética, mostrando una mejor interpretación porcentual del grado de variabilidad que la desviación típica o estándar.

Coeficiente de GINI

Mide el doble del área entre la distribución acumulada de valores ordenados de los indicadores de accesibilidad (de mayor a menor). Corresponde a un resumen estadístico de la Curva de Lorenz, asociado a una curva de frecuencias acumuladas que compara la distribución de una variable específica con la distribución uniforme que representa la

equidad. El coeficiente de GINI presenta un rango de valores que varía entre 0 (cuando la distribución es muy igualitaria) y 1 (cuando la distribución es muy concentrada).

• Índice de Theil

Corresponde a una medida de desigualdad utilizada para medir y comparar comúnmente la distribución de la renta (en este caso los valores de accesibilidad). El valor resultante varía entre 0 y 1. Cuanto más cercano sea el valor a 1, peor será la distribución de los valores de accesibilidad.

Modelación de la red

La red seleccionada para la obtención de los indicadores de accesibilidad, incluye todas las carreteras estatales, concesionadas y urbanas de las comunas que conforman el Área Metropolitana de Concepción, a escala 1:10.000, actualizadas al año 2013 por la Secretaria Regional Ministerial Seremi MINVU. Posteriormente a través de la aplicación de un conjunto de reglas topológicas se corrigieron los errores de la red vial almacenada en una *Personal Geodatabase* para la modelación en análisis de redes (Figura 4).

General Feature Classes Rules Errors Feature Class Feature Class Rule Red_Minvu Must Not Overlap Red Minvu Must Not Intersect Red_Minvu Must Not Have Ps... Red_Minvu Must Not Self-Ove... Red_Minvu Must Not Self-Inte... Red_Minvu Must Be Single Part

Figura 4: Errores topológicos de la red del MINVU y reglas para la corrección

Fuente: Elaboración propia

Las redes se catastran como un elemento geométrico lineal y las localidades y aldeas como elementos georreferenciados, con propiedades y atributos específicos. El dato de redes necesita las características básicas para la modelación como medidas de longitud por tramos, velocidades máximas, y tipo de vía; los centros incorporan características

demográficas asociadas a su tamaño de población. La creación de un *Network Dataset* implica la transformación de la red en un sistema de nodos (*Junctions*) y ejes (*Edges*), con la finalidad de utilizar las funcionalidades de la herramienta Network Analyst. Para fue necesario completar la tabla de atributos de la red vial con los atributos de Longitud, Velocidad y Tiempo, para este caso se utilizan valores estimados para el transporte privado.

Para determinar el atributo velocidad, se definió previamente el tipo de vía según la función de la ruta para diseño, cuyos criterios están contenidos en el Manual de Carreteras del Ministerio de Obras Públicas. Se incorporó además la vialidad urbana establecida en la Ordenanza General de Urbanismo y Construcción, considerando únicamente la red primaria. La clasificación de la red vial y velocidades asignadas se muestran en la Tabla 3.

Tabla 3: Clasificación y velocidades de diseño de la red vial

Categoría	Tipo de Vía	Velocidad Km/h
Commotomos	Autopistas	120
Carreteras	Primarias	80
Caminos	Locales y de Desarrollo	40
Urbanas	Red Primaria	60

Fuente: Elaboración propia en base a Manual de Carreteras, MOP

Para la obtención del atributo Tiempo de desplazamiento, se utilizan los valores de velocidad de la vía y la longitud de los tramos previamente calculados en la tabla de atributos de la red. Posteriormente se ingresa a la tabla de atributos con el nombre *Minutes*. Su formulación se expresa en la siguiente ecuación:

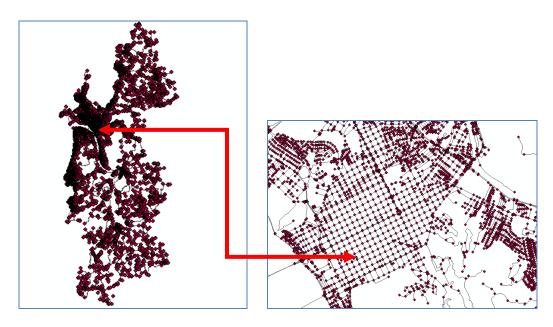
$$T = \frac{L * k}{V}$$

Donde,

L = Longitud del segmento

K = Constante de velocidad

V= Velocidad


Tabla 4: Tabla de atributos (velocidad, longitud, tiempo)

CLASIFICAC	PRMC	NOMBRE	Shape Length	Longitud	Jerarquia	Vel Auto	Minutes
PAVIMENTADO	URBAN	AV. GENERAL OSCAR	24.50512	0.024505	Autopista	120	0.012253
PAVIMENTADO	RURAL		231.201715	0.231202	Autopista	120	0.115601
PAVIMENTADO	URBAN	CAMINO A PENCO	418.951622	0.418952	Autopista	120	0.209476
PAVIMENTADO	URBAN	CARRETERA A TOME	308.77191	0.308772	Autopista	120	0.154386
PAVIMENTADO	URBAN	CARRETERA A TOME	128.174306	0.128174	Autopista	120	0.064087
PAVIMENTADO	URBAN	AV. GENERAL OSCAR	23.783318	0.023783	Autopista	120	0.011892
PAVIMENTADO	URBAN	IRARRAZAVAL	77.890749	0.077891	Autopista	120	0.038945
PAVIMENTADO	URBAN	CAMINO A PENCO	231.203328	0.231203	Autopista	120	0.115602
PAVIMENTADO	URBAN	CAMINO A PENCO	219.09787	0.219098	Autopista	120	0.109549
PAVIMENTADO	URBAN	RUTA 152	626.875958	0.626876	Autopista	120	0.313438
PAVIMENTADO	URBAN	AV. GENERAL OSCAR	103.044239	0.103044	Autopista	120	0.051522
PAVIMENTADO	URBAN	CAMINO A PENCO	386.398513	0.386399	Autopista	120	0.193199
PAVIMENTADO	URBAN	CAMINO A PENCO	724.658667	0.724659	Autopista	120	0.362329
PAVIMENTADO	URBAN	AV. GENERAL OSCAR	10.071034	0.010071	Autopista	120	0.005036
PAVIMENTADO	URBAN	LAS ACACIAS	76.461745	0.076462	Autopista	120	0.038231
PAVIMENTADO	URBAN	IRARRAZAVAL	78.18194	0.078182	Autopista	120	0.039091
NO PAVIMENTADO	RURAL		20.106798	0.020107	Locales y de Desarrollo	40	0.03016
PAVIMENTADO	RURAL		5.79242	0.005792	Locales y de Desarrollo	40	0.008689
NO PAVIMENTADO	RURAL		1619.211246	1.619211	Locales y de Desarrollo	40	2.428817
NO PAVIMENTADO	RURAL	RUTA 0-680	28.895413	0.028895	Locales y de Desarrollo	40	0.043343
NO PAVIMENTADO	RURAL	RUTA 0-680	392.057244	0.392057	Locales y de Desarrollo	40	0.588086
NO PAVIMENTADO	RURAL		775.073455	0.775073	Locales y de Desarrollo	40	1.16261
PAVIMENTADO	RURAL		27.8167	0.027817	Locales y de Desarrollo	40	0.041725
PAVIMENTADO	RURAL		111.102905	0.111103	Locales y de Desarrollo	40	0.166654
NO PAVIMENTADO	RURAL		210.003996	0.210004	Locales y de Desarrollo	40	0.315006
ΝΟ ΡΔΙ/ΙΜΕΝΤΔΠΟ	DIIDAI		385 462541	0.385463	Locales v de Desarrollo	40	0.578194
Selected Records (0 out of 37758 Selected) Options 🔻							

Fuente: Elaboración propia

El *Network Dataset* requiere de dos campos: un campo de distancia llamado *Meters* y otro de tiempo llamado *Minutes*, debido a que estos permiten que pueda ser reconocido por la aplicación. Por lo tanto, se traspasaron los datos de longitud a *Meters* y Tiempo a *Minutes*. Posteriormente, en ArcCatalog se seleccionó la cobertura de red vial del área de estudio, creándose un *New Network Dataset*, compuesto por nodos (*junctions*) y ejes (*edges*).

Figura 5: New Network Dataset (nodos y ejes de la red)

Fuente: Elaboración propia

OD Cost Matrix

Origins

Error
Located

Unlocated

Unlocated

Unlocated

Unlocated

Error
Located

Unlocated

Lines

Figura 6: Matriz O-D de las localidades de origen a los centros hospitalarios

Fuente: Elaboración propia

Posteriormente, se generó una matriz de costos de origen-destino (Figura 6), para lo cual se consideraron 228 localidades pertenecientes a las comunas de Concepción, Talcahuano, Chiguayante, San Pedro de la Paz, Hualpén, Penco, Tomé, Hualqui, Lota, Coronel y Santa Juana. Mediante una matriz de Origen-Destino, se obtienen los valores de los tiempos mínimos de acceso de las 228 localidades estudiadas a los hospitales públicos del AMC, que finalmente se utilizan para el cálculo de los indicadores de accesibilidad.

RESULTADOS

A continuación se presentan los resultados obtenidos del cálculo de los indicadores de accesibilidad de tipo locacional y gravitatorio (eficiencia), y sus niveles de disparidad de acuerdo de tres índices estadísticos seleccionados. Los resultados permiten cumplir los siguientes objetivos propuestos: en primer lugar identificar los tiempos de viaje de todas las localidades al Hospital Regional Guillermo Grant Benavente, de la comuna de Concepción; en segundo lugar obtener el indicador locacional de las localidades respecto a la totalidad de los hospitales evaluados; en tercer lugar obtener el indicador de eficiencia para la totalidad de los hospitales evaluados; y finalmente analizar las disparidades y desequilibrios territoriales que se producen en la accesibilidad a través de tres índices de dispersión.

Tiempos de viaje en transporte privado desde las localidades al Hospital Regional

La Figura 7, representa los tiempos de viaje en transporte privado desde cada una de las 228 localidades evaluadas al Hospital Regional Guillermo Grant Benavente. Se seleccionó esta instalación para el análisis debido a que se constituye como el principal establecimiento de salud a nivel Regional, que concentra la mayor cantidad de población atendida y el mayor número de derivaciones desde otros establecimientos de salud primaria y secundaria, al mismo tiempo presenta un mayor número de especialidades médicas.

Se observa que los mejores tiempos de viaje se concentran entre las comunas de Concepción, Hualpén, Talcahuano, Penco y San Pedro de la Paz, las cuales presentan una mayor cercanía geográfica respecto al centro de Concepción. Esta zona se caracteriza por presentar una buena conectividad urbana desde el punto de vista de la topología de la red y baja proporción de población rural la cual estaría más desfavorecida en termino de accesibilidad.

Las localidades de la comuna de Tomé, pese a ser eminentemente rurales y distribuirse de forma dispersa en el territorio, presentan valores que varían entre 18 y 50 minutos, incrementándose hacia el norte en la localidad costera de Dichato. Sin embargo, si el motivo del desplazamiento se trata de una prestación de urgencia, la comuna cuenta con un hospital público al cual recurrir. Por otra parte, los principales problemas se localizan al Sur del AMC, específicamente en las localidades de la comuna de Santa Juana. Aquí se registran los tiempos de viaje más altos al Hospital Regional, debido a que existe una importante concentración de localidades rurales con condiciones de infraestructura vial deficientes (presencia de huellas y caminos de tierra). Los tiempos de viaje alcanzan hasta 162 minutos, tiempo excesivo de viaje para la población si el motivo se tratase de una urgencia, considerando que esta comuna no cuenta con equipamiento hospitalario propio.

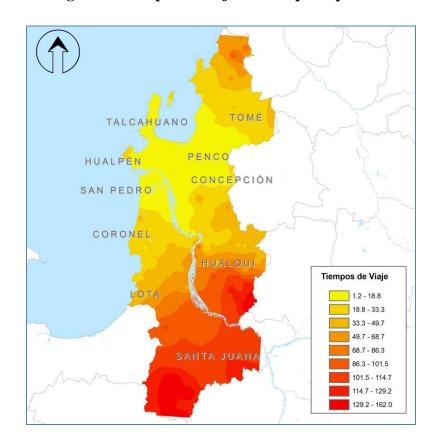


Figura 7: Tiempos de viaje en transporte privado

Fuente: Elaboración propia

Indicador de accesibilidad locacional considerando todos los recintos hospitalarios

Como se observa en la Figura 8, la accesibilidad según el indicador de localización a la red hospitalaria presenta notables diferencias en valores de accesibilidad en las distintas comunas que componen el AMC. Como se indicó en la metodología de este trabajo, este indicador otorga un mayor peso a la localización geográfica de las localidades, considerando como factor de ponderación la población de origen, es decir, a las localidades.

Este indicador presenta una distribución espacial de los niveles de accesibilidad similar al comportamiento de los tiempos de viaje al Hospital Regional, sin embargo se incrementan los valores máximos y mínimos de forma considerable, al incorporar toda la red hospitalaria de salud pública. Es decir, se evalúa la facilidad que tiene cada localidad para alcanzar cada uno de los hospitales.

Se identifican zonas más favorables en las comunas de Penco, Concepción, Talcahuano, Hualpén y San Pedro de la Paz debido a que constituyen la mayor concentración de hospitales del área de estudio (H. Regional, H. Traumátológico, H. de Penco y H. Higueras). En este anillo concéntrico los valores de accesibilidad varían entre 22 y 37 minutos. Se observan claramente dos núcleos de bajos niveles de accesibilidad locacional: Hualqui y Santa Juana, ambas comunas desprovistas de Hospitales.

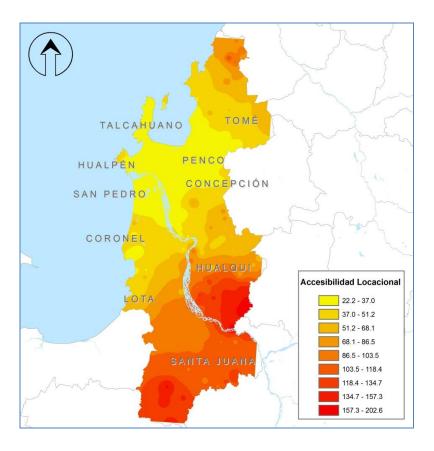


Figura 8: Indicador de Accesibilidad Locacional

Fuente: Elaboración propia

Las localidades rurales pertenecientes a Hualqui, principalmente Quilacoya, Talcamávida y Gomero, presentan un mayor problema, debido a que son centros poblados con alta densidad de población, y al mismo tiempo, las condiciones geográficas del territorio asociadas a las altas pendientes y riesgos de remoción en masa, han dificultado disponer de una red vial eficiente para el desplazamiento, principalmente al Hospital Regional de Concepción.

En Santa Juana la situación es similar para las localidades ubicadas al Sur de la comuna, donde la accesibilidad varía entre 100 y 200 minutos aproximadamente, con altas densidades de población en zonas rurales. Estas localidades presentan una alta accesibilidad al Hospital de Lota y una baja accesibilidad al Hospital Regional y al resto de las comunas.

Indicador de accesibilidad gravitatorio (eficiencia) considerando todos los recintos hospitalarios

El indicador de eficiencia de la red, a diferencia del locacional, otorga mayor importancia a las características topológicas de la red, específicamente a la relación entre tiempos reales y tiempos ideales, es decir, que tanto la infraestructura real se acerca a una infraestructura ideal o euclidiana, considerando además el factor población, en este caso, de los orígenes o localidades. Mientras más bajos se muestran los valores, se considerará una buena accesibilidad (más cercana a la impedancia ideal), y por el contrario, mientras más altos los valores se consideran como una baja accesibilidad.

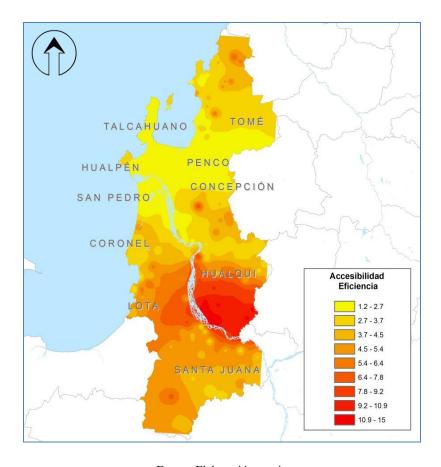


Figura 9: Indicador de Accesibilidad Gravitatorio

Fuente: Elaboración propia

En la Figura 9, se observa que los mejores niveles de accesibilidad a los hospitales, al igual que indicador anterior, se distribuyen entre las comunas de Concepción, Penco, San Pedro de la Paz, Hualpén y Talcahuano (valores menores a 4,5). Le siguen con una

accesibilidad media las comunas de Tomé, Coronel y Chiguayante (rangos entre 4,5-7,8), mientras que los valores más bajos se localizan en la comuna de Hualqui principalmente, siguiéndole Lota y Santa Juana con valores superiores a 7,8.

En general, este indicador responde a las facilidades para alcanzar el equipamiento hospitalario considerando la morfología de la red, aspecto útil para identificar dónde se concentran los problemas de infraestructura, con altos niveles de rodeo y al mismo tiempo bajas velocidades determinadas por la tipología de la vialidad. En estas zonas, el tipo de vialidad corresponde a caminos rurales de tierra y huellas que en algunos casos no permiten en transporte motorizado, por lo que la población en algunos segmentos debe utilizar como medio de transporte la caminata, como es el caso de algunas localidades rurales de Hualqui.

Índices de dispersión de los indicadores de accesibilidad seleccionados

La Tabla 5 muestra los resultados de los índices estadísticos utilizados para evaluar la distribución espacial de los valores de accesibilidad en los dos indicadores calculados. Lo primero que se debe considerar para el análisis de los índices estadísticos, es que los valores más bajos implican que los niveles de accesibilidad a Hospitales serían menos dispares, encontrándose por lo tanto una mayor cohesión territorial.

Tabla 5: Índices de dispersión para evaluar los indicadores de accesibilidad

Índice Estadístico/ Indicador de Accesibilidad	Localización	Eficiencia de la red
Desviación estándar	38,8	2,6
Media	61,3	4,1
Coeficiente de Variación	60,4	63,5
media	64,35	4,19
n	228	228
n2	51984	51984
Índice de Gini	0,25	0,22
Media Geométrica	54.65	3.59
Índice de Theil	0,07	0,06

Fuente: Elaboración propia

Con el objetivo de interpretar correctamente estos índices, se debe tener en cuenta que cada uno de los indicadores de accesibilidad seleccionados proveen información diferente y complementaria entre sí, por lo tanto, cada uno muestra diferentes contrastes en la accesibilidad espacial (Gutiérrez *et al.*, 2007).

Este análisis permite evaluar qué indicador involucra una mejor distribución de los niveles de accesibilidad, y como se observa, el índice de eficiencia de red presenta los valores más bajos en dos de los tres estadísticos analizados. En este indicador, los índices más bajos de accesibilidad se concentran en la comuna de Hualqui, mientras incrementan los valores de accesibilidad en las comunas donde el indicador locacional muestra valores más deficientes (Santa Juana y Tomé).

CONCLUSIONES

Este trabajo analiza el comportamiento de la accesibilidad a la red de salud hospitalaria en las diferentes localidades que componen el Área Metropolitana de Concepción, a través de dos indicadores espaciales que utilizan distancias y tiempos de viaje por redes de transporte privado. Mediante la aplicación de los indicadores de accesibilidad seleccionados se identifican claramente las zonas mayormente beneficiadas en el acceso espacial a la salud, correspondientes principalmente a las comunas de Concepción, Hualpén, Talcahuano, Penco y San Pedro de la Paz o conurbación central, donde existe una mayor dotación de redes de transporte. Mientras que los valores más bajos se identifican principalmente al Sur, en las comunas de Santa Juana y Hualqui, ambas desprovistas de hospitales públicos y con una menor densidad de redes.

En profundidad, el análisis de los índices estadísticos permite inferir que el indicador gravitatorio de eficiencia de la red presenta una mejor distribución de los valores de accesibilidad. Sin embargo, el indicador locacional ha sido mayormente utilizado en los estudios de accesibilidad a equipamientos de salud, debido a que su evaluación se concentra en la posición geográfica de las localidades o puntos desde donde se desplaza la población hacia los centros de salud, más que en la disposición geométrica de la red de transporte.

Cabe destacar que en la obtención de los indicadores de accesibilidad se consideró como modo de transporte solamente al vehículo privado, si bien se evalúa un solo modo de transporte, el estudio es un avance metodológico, respecto de las aportaciones clásicas en geografía que utilizan el concepto de accesibilidad desde el área de servicio o cobertura de un equipamiento hospitalario, considerando como variable fundamental la localización del equipamiento a servir. Este trabajo es una primera aproximación de la cobertura de la red de salud en el área de estudio, la cual considera además de la posición geográfica de los

centros, la disposición de la red de transporte privado, para una pronta investigación, incorporar el transporte público y sus limitantes, como la asignación de rutas fijas y la caminata como modo complementario. Asi mismo, serán relevantes los aspectos ligados a la movilidad desde la experiencia del viaje en relación a las presentaciones de los servicios sanitarios, en este sentido serán de mucha utilidad los los nuevos datos de la próxima Encuesta Origen Destino de Concepción, más áun cuando en el estudio de las desigualdades socioespaciales las relaciones entre movilidad, salud e inclusión social aún son poco conocidas (Gutiérrez, 2008).

Finalmente, los estudios geográficos desde esta perspectiva espacial y cuantitativa como el aquí desarrollado, aplicados a la planificación y gestión territorial de los servicios sanitarios, ofrecen posibilidades notables para evaluar tanto la accesibilidad espacial a los equipamientos, como la distribución de la oferta actual de servicios hospitalarios, en las que se pueden reconocer desigualdades, detalladas en la identificación de las áreas razonablemente servidas y/o marginadas, y cuáles son los grupos socio-espaciales beneficiados y/o penalizados en accesibilidad (Fuenzalida, 2010). Esto de forma directa permite valorar en qué medida los objetivos de eficiencia y equidad espacial se logran en cada territorio o región.

BIBLIOGRAFÍA

BARCELLOS, C.; BUZAI, G.D. 2006. La dimensión espacial de las desigualdades sociales en salud: aspectos de su evolución conceptual y metodológica. *Anuario de la División Geografía*, 275-92.

BOSQUE SENDRA, J. 1992. Sistemas de Información Geográfica. Rialp. Madrid.

CONSERJERÍA DE SALUD. 2004. *Libro Blanco de la Atención Especializada en Andalucía*. Desarrollo de los Centros Hospitalarios de Alta Resolución. Consejería de Salud, Junta de Andalucía, Sevilla, pp. 52 (inédito).

FUENZALIDA, M. 2010. Análisis de desigualdades territoriales en la oferta de equipamientos públicos: el caso de los hospitales en la red asistencial del sistema público de salud en Chile. *Geografía y Sistemas de Información Geográfica*. 2(2):111-125.

GUTIÉRREZ, A. 2008. Geografía, transporte y movilidad. *Revista Espacios*. 100-107.

GUTIÉRREZ, J.; MONZÓN, A. 1993. Accesibilidad a los Centros de Actividad Económica antes y después del Plan Director de Infraestructuras. *Ciudad y Territorio*. 1(97):385-395.

GUTIÉRREZ, J. 1994. Accesibilidad a los Centros de Actividad Económica en España. *Revista de Obras Públicas*. 3331:39-42.

GUTIÉRREZ, J.; MONZÓN, A.; PINÉRO, J. M. 1998. Accessibility, network efficiency, and transport infrastructure planning. *Environment and Planning A*. 30(8):1337-1350.

GUTIÉRREZ, J.; GARCÍA PALOMARES, J. 2002. Accesibilidad peatonal a la red sanitaria de asistencia primaria en Madrid. *Anales de Geografía de la Universidad Complutense*. 269-280.

GUTIÉRREZ, J.; CONDEÇO, A. 2006. Medición de efectos de desbordamiento de las infraestructuras de transporte a partir de indicadores de accesibilidad. *XIV Congreso Panamericano de Ingeniería de Tránsito y Transporte*. Las Palmas de Gran Canaria.

GUTIÉRREZ, J.; CONDEÇO, A.; MARTÍN, J. 2007. Using accessibility indicators and GIS to assess and monetarize spatial spillovers of transport infrastructure. *47th Congress of ERSA* (*European Association of Regional Science*). Paris. 4-32.

HIGUERAS, A. 2003. *Teoría y Método de la Geografía. Introducción al Análisis geográfico regional*. Prensas Universitarias de Zaragoza. Colección Textos Docentes, nº 99. pp. 447.

INSTITUTO NACIONAL DE ESTADÍSTICAS (INE). 2002. *División político administrativa y censal*. Santiago, Chile.

IÑIGUEZ, L.; BARCELLOS, C. 2003. Geografía y Salud en América Latina: Evolución y Tendencias. *Revista Cubana de Salud Pública*. 29(4):330-43.

LÓPEZ, E. 2007. Assessment of transport infrastructure plans: a strategic approach integrating efficiency, cohesion and environmental aspects. Doctoral Thesis. Madrid, Universidad Politécnica de Madrid, 69-179.

LOYOLA, C.; ALBORNOZ, E. 2009. Flujo, movilidad y niveles de accesibilidad en el centro de Chillán, año 2007: Propuesta de mejoramiento mediante SIG. *Urbano*. 12(19):17-27.

MARTÍN, J.; GUTIÉRREZ, J.; ROMÁN, C. 2004. Data envelopment analysis (DEA) index to measure the accessibility impacts of new infrastructure investments: the case of high-speed train corridor Madrid-Barcelona-French border. *Regional Studies*. 38(6):697-712.

MONZÓN, A.; ORELLANA, H. 1996. La accesibilidad como instrumento de evaluación de las infraestructuras de transporte. Análisis de las actuaciones del P.D.I. *Estudios de Transporte y Comunicaciones*. 73:35-52.

PETERS, D. 2003. Cohesion, policentricity, missing links and bottlenecks: conflicting spatial storylines for Pan-European transport investments. *European Planning Studies*, 11(3): 317-339.

RAMÍREZ, M. L.; BOSQUE SENDRA, J. 2001. Localización de hospitales: analogías y diferencias del uso del modelo P-mediano en Sig raster y vectorial. *Anales de Geografía de la Universidad complutense*, 21, pp. 53.

RAMÍREZ, M.L. 2003. Cálculo de medidas de accesibilidad geográfica, temporal y económica generadas mediante Sistemas de Información Geográfica. *I Congreso de la Ciencia Cartográfica y VIII Semana Nacional de Cartográfica*.

RODRÍGUEZ, V. 2010. Medición de la accesibilidad geográfica de la población a la red de hospitales de alta resolución de Andalucía mediante sistemas de información geográfica. *Tecnologías de la Información Geográfica: La Información Geográfica al servicio de los ciudadanos.* Secretariado de Publicaciones de la Universidad de Sevilla, 549-564.

ROJAS, C.; MUÑIZ, I.; GARCÍA-LÓPEZ, M. 2009. Estructura urbana y policentrismo en el Área Metropolitana de Concepción. *Revista Estudios latinoamericanos urbanos regionales EURE*, 47-70.

THOMOPOULOS, N.; GRANT-MULLER, S.; TIGHT, M. 2009. Incorporating equity considerations in transport infrastructure evaluation: Current practice and a proposed methodology. *Evaluation and Program Planning*. 32:351-359.

VILLANUEBA, A. 2010. Accesibilidad geográfica a los sistemas de salud y educación. Análisis espacial de las localidades de Necochea y Quequén. *Revista Transporte y Territorio*. 2:136-157.

Agradecimientos: Fondap CEDEUS N°15110020 / IBB GESITRAN N° 11-PC.S2.1116

© Marcela Martínez Bascuñán y Carolina Rojas Quezada

Martínez Bascuñán, M.; Rojas Quezada, C. 2014. Evaluación de la accesibilidad espacial a la red hospitalaria en el área metropolitana de Concepción. *Geográfica y Sistemas de Información Geográfica*. (GESIG-UNLU, Luján). Año 6, N° 6, Sección I: 176-200.On-line: www.gesig-proeg.com.ar

Recibido: 10 de octubre de 2014 / Aprobado: 27 de noviembre de 2014